Publications by authors named "Virve Ravolainen"

There is an urgent need to understand and address the risks associated with a warming climate for ecosystems and societies in the Arctic and sub-Arctic regions. There are major gaps in our understanding of the complex effects of climate change-including extreme events, cascading impacts across ecosystems, and the underlying socioecological dynamics and feedbacks-all of which need collaborative efforts to be resolved. Here, we present results where climate scientists, ecologists, social scientists, and practitioners were asked to identify the most urgent research needs for understanding climate change impacts and to identify the actions for reducing future risks in catchment areas in the Norwegian High North, a region that encompasses both Arctic and sub-Arctic climates in northern Norway.

View Article and Find Full Text PDF

This review provides a synopsis of the main findings of individual papers in the special issue Terrestrial Biodiversity in a Rapidly Changing Arctic. The special issue was developed to inform the State of the Arctic Terrestrial Biodiversity Report developed by the Circumpolar Biodiversity Monitoring Program (CBMP) of the Conservation of Arctic Flora and Fauna (CAFF), Arctic Council working group. Salient points about the status and trends of Arctic biodiversity and biodiversity monitoring are organized by taxonomic groups: (1) vegetation, (2) invertebrates, (3) mammals, and (4) birds.

View Article and Find Full Text PDF

The Arctic is undergoing biological and environmental changes, and a coordinated effort to monitor is critical to detect these changes. The Circumpolar Biodiversity Monitoring Programme (CBMP) of the Arctic Council biodiversity working group, Conservation of Arctic Flora and Fauna (CAFF), has developed pan-Arctic biodiversity monitoring plans that aims to improve the ability to detect and report on long-term changes. Whilst introducing this special issue, this paper also presents the making of the terrestrial monitoring plan and discusses how the plan follows the steps required for an adaptive and ecosystem-based monitoring programme.

View Article and Find Full Text PDF

Vegetation change has consequences for terrestrial ecosystem structure and functioning and may involve climate feedbacks. Hence, when monitoring ecosystem states and changes thereof, the vegetation is often a primary monitoring target. Here, we summarize current understanding of vegetation change in the High Arctic-the World's most rapidly warming region-in the context of ecosystem monitoring.

View Article and Find Full Text PDF

Changes in Arctic vegetation can have important implications for trophic interactions and ecosystem functioning leading to climate feedbacks. Plot-based vegetation surveys provide detailed insight into vegetation changes at sites around the Arctic and improve our ability to predict the impacts of environmental change on tundra ecosystems. Here, we review studies of changes in plant community composition and phenology from both long-term monitoring and warming experiments in Arctic environments.

View Article and Find Full Text PDF

Variability in biotic interaction strength is an integral part of food web functioning. However, the consequences of the spatial and temporal variability of biotic interactions are poorly known, in particular for predicting species abundance and distribution. The amplitude of rodent population cycles (i.

View Article and Find Full Text PDF

Rangifer (caribou/reindeer) management has been suggested to mitigate the temperature-driven transition of Arctic tundra into a shrubland state, yet how this happens is uncertain. Here we study this much focused ecosystem state transition in riparian areas, where palatable willows (Salix) are dominant tall shrubs and highly responsive to climate change. For the state transition to take place, small life stages must become tall and abundant.

View Article and Find Full Text PDF

The exact cause of population dieback in nature is often challenging to identify retrospectively. Plant research in northern regions has in recent decades been largely focussed on the opposite trend, namely increasing populations and higher productivity. However, a recent unexpected decline in remotely-sensed estimates of terrestrial Arctic primary productivity suggests that warmer northern lands do not necessarily result in higher productivity.

View Article and Find Full Text PDF

The Arctic is warming more rapidly than other region on the planet, and the northern Barents Sea, including the Svalbard Archipelago, is experiencing the fastest temperature increases within the circumpolar Arctic, along with the highest rate of sea ice loss. These physical changes are affecting a broad array of resident Arctic organisms as well as some migrants that occupy the region seasonally. Herein, evidence of climate change impacts on terrestrial and marine wildlife in Svalbard is reviewed, with a focus on bird and mammal species.

View Article and Find Full Text PDF

In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology.

View Article and Find Full Text PDF

Unlabelled: The ecology of small rodent food selection is poorly understood, as mammalian herbivore food selection theory has mainly been developed by studying ungulates. Especially, the effect of food availability on food selection in natural habitats where a range of food items are available is unknown. We studied diets and selectivity of grey-sided voles (Myodes rufocanus) and tundra voles (Microtus oeconomus), key herbivores in European tundra ecosystems, using DNA metabarcoding, a novel method enabling taxonomically detailed diet studies.

View Article and Find Full Text PDF

Recent studies from mountainous areas of small spatial extent (<2500 km(2) ) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities.

View Article and Find Full Text PDF