Severe asthma and sinus disease are consequences of type 2 inflammation (T2I), mediated by interleukin (IL)-33 signaling through its membrane-bound receptor, ST2. Soluble (s)ST2 reduces available IL-33 and limits T2I, but little is known about its regulation. We demonstrate that prostaglandin E (PGE) drives production of sST2 to limit features of lung T2I.
View Article and Find Full Text PDFExcessive mucus production is a major feature of allergic asthma. Disruption of epithelial junctions by allergens such as house dust mite (HDM) results in the activation of β-catenin signaling, which has been reported to stimulate goblet cell differentiation. β-catenin interacts with various co-activators including CREB binding protein (CBP) and p300, thereby regulating the expression of genes involved in cell proliferation and differentiation, respectively.
View Article and Find Full Text PDFAirway epithelial barrier dysfunction is frequently observed in asthma and may have important implications. The physical barrier function of the airway epithelium is tightly interwoven with its immunomodulatory actions, while abnormal epithelial repair responses may contribute to remodelling of the airway wall. We propose that abnormalities in the airway epithelial barrier play a crucial role in the sensitization to allergens and pathogenesis of asthma.
View Article and Find Full Text PDFMechanical boundary conditions critically influence the bone healing process. In this context, previous in vitro studies have demonstrated that cyclic mechanical compression alters migration and triggers osteogenesis of mesenchymal stromal cells (MSC), both processes being relevant to healing. However, it remains unclear whether this mechanosensitivity is a direct consequence of cyclic compression, an indirect effect of altered supply or a specific modulation of autocrine bone morphogenetic protein (BMP) signaling.
View Article and Find Full Text PDF