Foods
November 2024
This study aimed to transform raspberry pomace, a by-product of the berry industry, into a sustainable, fiber-rich functional ingredient using convective drying. Drying experiments were conducted at temperatures of 50, 60, 70, 80, and 90 °C to identify the optimal conditions that balance process efficiency and preservation of functional and bioactive properties. The best results were achieved at 70 °C, where a high drying rate () of 0.
View Article and Find Full Text PDFor chickpea is an important and highly nutritious pulse, a source of complex carbohydrates, proteins, vitamins, and minerals, considered non-allergenic, and non-GMO crop. Processing technologies play an important role in modifying some chickpea properties and thus increasing its nutritional and health benefits. Herein is summarized and compared the available data on nutritional and functional aspects caused by thermal, nonthermal, and combinations of treatments for chickpea processing.
View Article and Find Full Text PDFAdditive manufacturing, or 3D printing, has raised interest in many areas, such as the food industry. In food, 3D printing can be used to personalize nutrition and customize the sensorial characteristics of the final product. The rheological properties of the material are the main parameters that impact the 3D-printing process and are crucial to assuring the printability of formulations, although a clear relationship between these properties and printability has not been studied in depth.
View Article and Find Full Text PDFFused deposition modeling (FDM) uses lattice arrangements, known as infill, within the fabricated part. The mechanical properties of parts fabricated via FDM are dependent on these infill patterns, which make their study of great relevance. One of the advantages of FDM is the wide range of materials that can be employed using this technology.
View Article and Find Full Text PDFFood Chem
March 2022
Frog farming systems do not take advantage of their byproducts, which represents health risks and environmental pollution. The present study aimed to evaluate the proximate composition, amino acid, and fatty acid profile of American Bullfrog byproducts (whole frogs (WF), legs (LF), and skin (SF)) and their technological functionality. Results showed that WF, LF, and SF protein content was 47.
View Article and Find Full Text PDFRed beetroot is rich in bioactive compounds such as polyphenols, flavonoids, betaxanthins, betacyanins, among others. According to selected processing methods, the bioaccessibility of these compounds could be either enhanced or decreased. This study evaluated the effect of four different drying conditions: (1) Traditional Drying (TD), (2) Swell Drying (SD), (3) DIC Blanching + Traditional Drying (BTD), and (4) DIC Blanching + Swell Drying (BSD) on the antioxidant content and the antioxidant activity of red beetroots.
View Article and Find Full Text PDFChokecherry ( L.) is rich in bioactive molecules as phenolics, which can act as antioxidants, anti-inflammatory, anticancer, among others; however, due to its high perishability, most of this fruit is wasted. Freezing and sun drying have been the most adopted techniques to avoid its postharvest deterioration.
View Article and Find Full Text PDFThe increase in accessibility of fused filament fabrication (FFF) machines has inspired the scientific community to work towards the understanding of the structural performance of components fabricated with this technology. Numerous attempts to characterize and to estimate the mechanical properties of structures fabricated with FFF have been reported in the literature. Experimental characterization of printed components has been reported extensively.
View Article and Find Full Text PDFFruit by-products are being investigated as non-conventional alternative sources of dietary fiber (DF). High hydrostatic pressure (HHP) treatments have been used to modify DF content as well as its technological and physiological functionality. Orange, mango and prickly pear peels untreated (OU, MU and PPU) and HHP-treated at 600 MPa (OP/55 °C and 20 min, MP/22 °C and 10 min, PPP/55 °C and 10 min) were evaluated.
View Article and Find Full Text PDFThe effect of high hydrostatic pressure (HHP) and temperature on composition of non-conventional dietary fiber (DF) sources and functional properties were evaluated. Mango, orange, or prickly pear peels were processed at 600 MPa during 10 min at 22 ℃ and 55 ℃. Total (TDF), soluble (SDF), and insoluble (IDF) dietary fiber, water/oil holding, and retention capacity, solubility, swelling capacity, and bulk density were assayed.
View Article and Find Full Text PDFBackground: Comminuted orange, a product obtained by grinding the juice and peel and used to formulate beverages, has a high pectin methylesterase (PME) activity; thus the inactivation of this enzyme is necessary to avoid quality losses related to cloud loss. The use of high hydrostatic pressure (HHP) and mild temperature allows inactivation of enzymes with minimal quality changes. This work aimed to evaluate the effect of pressure, mild temperature and time of treatment, including come-up and holding time, on the inactivation of PME in comminuted orange, and to apply kinetic and response surface models (RSM) to predict residual PME activity (A/A0 ).
View Article and Find Full Text PDF