Publications by authors named "Virginie Y Martiny"

The D3R Grand Challenge 2015 was focused on two protein targets: Heat Shock Protein 90 (HSP90) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4). We used a protocol involving a preliminary analysis of the available data in PDB and PubChem BioAssay, and then a docking/scoring step using more computationally demanding parameters that were required to provide more reliable predictions. We could evidence that different docking software and scoring functions can behave differently on individual ligand datasets, and that the flexibility of specific binding site residues is a crucial element to provide good predictions.

View Article and Find Full Text PDF

The 2014 CSAR Benchmark Exercise was focused on three protein targets: coagulation factor Xa, spleen tyrosine kinase, and bacterial tRNA methyltransferase. Our protocol involved a preliminary analysis of the structural information available in the Protein Data Bank for the protein targets, which allowed the identification of the most appropriate docking software and scoring functions to be used for the rescoring of several docking conformations datasets, as well as for pose prediction and affinity ranking. The two key points of this study were (i) the prior evaluation of molecular modeling tools that are most adapted for each target and (ii) the increased search efficiency during the docking process to better explore the conformational space of big and flexible ligands.

View Article and Find Full Text PDF

Motivation: Cytochrome P450 (CYP) is a superfamily of enzymes responsible for the metabolism of drugs, xenobiotics and endogenous compounds. CYP2D6 metabolizes about 30% of drugs and predicting potential CYP2D6 inhibition is important in early-stage drug discovery.

Results: We developed an original in silico approach for the prediction of CYP2D6 inhibition combining the knowledge of the protein structure and its dynamic behavior in response to the binding of various ligands and machine learning modeling.

View Article and Find Full Text PDF

Drug metabolizing enzymes play a key role in the metabolism, elimination and detoxification of xenobiotics, drugs and endogenous molecules. While their principal role is to detoxify organisms by modifying compounds, such as pollutants or drugs, for a rapid excretion, in some cases they render their substrates more toxic thereby inducing severe side effects and adverse drug reactions, or their inhibition can lead to drug-drug interactions. We focus on sulfotransferases (SULTs), a family of phase II metabolizing enzymes, acting on a large number of drugs and hormones and showing important structural flexibility.

View Article and Find Full Text PDF

Cytochrome P450 (CYP) is a supergene family of metabolizing enzymes involved in the phase I metabolism of drugs and endogenous compounds. CYP oxidation often leads to inactive drug metabolites or to highly toxic or carcinogenic metabolites involved in adverse drug reactions (ADR). During the last decade, the impact of CYP polymorphism in various drug responses and ADR has been demonstrated.

View Article and Find Full Text PDF

Quantitative structure-activity relationship (QSAR) methods and related approaches have been used to investigate the molecular features that influence the absorption, distribution, metabolism, excretion and toxicity (ADMET) of drugs. As the three-dimensional structures of several major ADMET proteins become available, structure-based (docking-scoring) computations can be carried out to complement or to go beyond QSAR studies. Applying docking-scoring methods to ADMET proteins is a challenging process because they usually have a large and flexible binding cavity; however, promising results relating to metabolizing enzymes have been reported.

View Article and Find Full Text PDF