The aim of this article is to determine the best dielectric between SiO, SiN and TiO for quantum cascade laser (QCL) passivation layers depending on the operation wavelength. It relies on both Mueller ellipsometry measurement to accurately determine the optical constants (the refractive index n and the extinction coefficient k) of the three dielectrics, and optical simulations to determine the mode overlap with the dielectric and furthermore the modal losses in the passivation layer. The impact of dielectric thermal conductivities are taken into account and shown to be not critical on the laser performances.
View Article and Find Full Text PDFWe study the impact of interface roughness on the operation of mid-IR and THz quantum cascade lasers. Particular emphasis is given towards the differences between the Gaussian and exponential roughness distribution functions, for which we present results from simulation packages based on nonequilibrium Green's functions and density matrices. The Gaussian distribution suppresses scattering at high momentum transfer which enhances the lifetime of the upper laser level in mid-IR lasers.
View Article and Find Full Text PDFWe use density functional theory to study the density of the 3sp semicore states in transition and noble metals. The first objective is to understand how semicore states influence cohesive properties which mainly depend on the valence density. We define a localization radius for the semicore density which is found to be a crucial parameter and to heavily influence the cohesive properties.
View Article and Find Full Text PDF