Prefrontal cortical and striatal areas have been identified by inactivation or lesion studies to be required for behavioral flexibility, including selecting and processing of different types of information. In order to identify these networks activated selectively during the acquisition of new reward contingency rules, rats were trained to discriminate orientations of bars presented in pseudorandom sequence on two video monitors positioned behind the goal sites on a T-maze with return arms. A second group already trained in the visual discrimination task learned to alternate left and right goal arm visits in the same maze while ignoring the visual cues still being presented.
View Article and Find Full Text PDFIntroduction: Dopamine release in the forebrain by midbrain ventral tegmental nucleus (VTA) and substantia nigra pars compacta (SNc) neurons is implicated in reward processing, goal-directed learning, and decision-making. Rhythmic oscillations of neural excitability underlie coordination of network processing, and have been reported in these dopaminergic nuclei at several frequency bands. This paper provides a comparative characterization of several frequencies of oscillations of local field potential and single unit activity, highlighting some behavioral correlates.
View Article and Find Full Text PDFHighly synchronous neuronal assembly activity is deemed essential for cognitive brain function. In theory, such synchrony could coordinate multiple brain areas performing complementary processes. However, cell assemblies have been observed only in single structures, typically cortical areas, and little is known about their synchrony with downstream subcortical structures, such as the striatum.
View Article and Find Full Text PDF