Publications by authors named "Virginie Kergourlay"

Dysferlinopathies are a group of muscular dystrophies caused by recessive mutations in the DYSF gene encoding the dysferlin protein. Dysferlin is a transmembrane protein involved in several muscle functions like T-tubule maintenance and membrane repair. In 2009, a study showed the existence of fourteen dysferlin transcripts generated from alternative splicing.

View Article and Find Full Text PDF

Objective: Dysferlin is a large transmembrane protein that functions in critical processes of membrane repair and vesicle fusion. Dysferlin-deficiency due to mutations in the dysferlin gene leads to muscular dystrophy (Miyoshi myopathy (MM), limb girdle muscular dystrophy type 2B (LGMD2B), distal myopathy with anterior tibial onset (DMAT)), typically with early adult onset. At least 416 pathogenic dysferlin mutations are known, but for approximately 17% of patients, one or both of their pathogenic variants remain undefined following standard exon sequencing methods that interrogate exons and nearby flanking intronic regions but not the majority of intronic regions.

View Article and Find Full Text PDF

Dysferlinopathies are a family of disabling muscular dystrophies with LGMD2B and Miyoshi myopathy as the main phenotypes. They are associated with molecular defects in DYSF, which encodes dysferlin, a key player in sarcolemmal homeostasis. Previous investigations have suggested that exon skipping may be a promising therapy for a subset of patients with dysferlinopathies.

View Article and Find Full Text PDF

Background: GNE myopathy is a rare autosomal recessively inherited muscle disease resulting from mutations in the gene encoding GNE (UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase), a key enzyme in sialic acid biosynthesis. 154 different pathogenic variants have been previously associated with GNE myopathy.

Objective: Describe novel pathogenic variants associated with GNE myopathy in a large French cohort.

View Article and Find Full Text PDF

Missense, iso-semantic, and intronic mutations are challenging for interpretation, in particular for their impact in mRNA. Various tools such as the Human Splicing Finder (HSF) system could be used to predict the impact on splicing; however, no diagnosis result could rely on predictions alone, but requires functional testing. Here, we report an in vitro approach to study the impact of DYSF mutations on splicing.

View Article and Find Full Text PDF