The histone variant H2A.Z plays important functions in the regulation of gene expression. In mammals, it is encoded by two genes, giving rise to two highly related isoforms named H2A.
View Article and Find Full Text PDFTDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops.
View Article and Find Full Text PDFThe present study focuses on the use of a metaproteomic approach to analyze Black Extrinsic Tooth Stains, a specific type of pigmented extrinsic substance. Metaproteomics is a powerful emerging technology that successfully enabled human protein and bacterial identification of this specific dental biofilm using high-resolution tandem mass spectrometry. A total of 1600 bacterial proteins were identified in black stain (BS) samples and 2058 proteins in dental plaque (DP) samples, whereas 607 and 582 human proteins were identified in BS and DP samples, respectively.
View Article and Find Full Text PDFBackground: Soil and sediment microorganisms are highly phylogenetically diverse but are currently largely under-represented in public molecular databases. Their functional characterization by means of metaproteomics is usually performed using metagenomic sequences acquired for the same sample. However, such hugely diverse metagenomic datasets are difficult to assemble; in parallel, theoretical proteomes from isolates available in generic databases are of high quality.
View Article and Find Full Text PDFThe microbial diversity encompassed by the environmental biosphere is largely unexplored, although it represents an extensive source of new knowledge and potentially of novel enzymatic catalysts for biotechnological applications. To determine the taxonomy of microorganisms, proteotyping by tandem mass spectrometry has proved its efficiency. Its latest extension, phylopeptidomics, adds a biomass quantitation perspective for mixtures of microorganisms.
View Article and Find Full Text PDFMetaproteomics of gut microbiomes from animal hosts lacking a reference genome is challenging. Here we describe a strategy combining high-resolution metaproteomics and host RNA sequencing (RNA-seq) with generalist database searching to survey the digestive tract of Gammarus fossarum, a small crustacean used as a sentinel species in ecotoxicology. This approach provides a deep insight into the full range of biomasses and metabolic activities of the holobiont components, and differentiates between the intestine and hepatopancreatic caecum.
View Article and Find Full Text PDFBackground: There is an important need for the development of fast and robust methods to quantify the diversity and temporal dynamics of microbial communities in complex environmental samples. Because tandem mass spectrometry allows rapid inspection of protein content, metaproteomics is increasingly used for the phenotypic analysis of microbiota across many fields, including biotechnology, environmental ecology, and medicine.
Results: Here, we present a new method for identifying the biomass contribution of any given organism based on a signature describing the number of peptide sequences shared with all other organisms, calculated by mathematical modeling and phylogenetic relationships.