Publications by authors named "Virginie Gervais"

Single-stranded, positive-sense RNA ((+)RNA) viruses replicate their genomes in virus-induced intracellular membrane compartments. (+)RNA viruses dedicate a significant part of their small genomes (a few thousands to a few tens of thousands of bases) to the generation of these compartments by encoding membrane-interacting proteins and/or protein domains. Noroviruses are a very diverse genus of (+)RNA viruses including human and animal pathogens.

View Article and Find Full Text PDF

Unlabelled: As for all single-stranded, positive-sense RNA (+RNA) viruses, intracellular RNA synthesis relies on extensive remodeling of host cell membranes that leads to the formation of specialized structures. In the case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus causing COVID-19, endoplasmic reticulum membranes are modified, resulting in the formation of double-membrane vesicles (DMVs), which contain the viral dsRNA intermediate and constitute membrane-bound replication organelles. The non-structural and transmembrane protein nsp3 is a key player in the biogenesis of DMVs and, therefore, represents an interesting antiviral target.

View Article and Find Full Text PDF

The growing applications of therapeutic nucleic acids requires the concomitant development of vectors that are optimized to complex one type of nucleic acid, forming nanoparticles suitable for further trafficking and delivery. While fine-tuning a vector by molecular engineering to obtain a particular nanoscale organization at the nanoparticle level can be a challenging endeavor, we turned the situation around and instead screened the complexation preferences of dynamic constitutional frameworks toward different types of DNAs. Dynamic constitutional frameworks (DCF) are recently-identified vectors by our group that can be prepared in a versatile manner through dynamic covalent chemistry.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are transcribed as long primary transcripts (pri-miRNAs) by RNA polymerase II. Plant pri-miRNAs encode regulatory peptides called miPEPs, which specifically enhance the transcription of the pri-miRNA from which they originate. However, paradoxically, whereas miPEPs have been identified in different plant species, they are poorly conserved, raising the question of the mechanisms underlying their specificity.

View Article and Find Full Text PDF

The identification of molecules, which could modulate protein-protein interactions (PPIs), is of primary interest to medicinal chemists. Using biophysical methods during the current study, we have screened 76 compounds (grouped into 16 mixtures) against the p8 subunit of the general transcription factor (TFIIH), which has recently been validated as an anti-cancer drug target. 10% of the tested compounds showed interactions with p8 protein in STD-NMR experiments.

View Article and Find Full Text PDF

Guanine-quadruplexes (G4s) are targets for anticancer therapeutics. In this context, human telomeric DNA (HT-DNA) that can fold into G4s sequences are of particular interest, and their stabilization with small molecules through a visualizable process has become a challenge. As a new type of ligand for HT-G4, we designed a tetraimidazolium tetraphenylethene () as a water-soluble light-up G4 probe.

View Article and Find Full Text PDF

The original version of this Article contained errors in Figures 1 and 4. In Fig. 1b, the Mtb-SecB sequence was displayed incorrectly.

View Article and Find Full Text PDF

SecB chaperones assist protein export by binding both unfolded proteins and the SecA motor. Certain SecB homologs can also control toxin-antitoxin (TA) systems known to modulate bacterial growth in response to stress. In such TA-chaperone (TAC) systems, SecB assists the folding and prevents degradation of the antitoxin, thus facilitating toxin inhibition.

View Article and Find Full Text PDF

The human transcription factor TFIIH is a large complex composed of 10 subunits that form an intricate network of protein-protein interactions critical for regulating its transcriptional and DNA repair activities. The trichothiodystrophy group A protein (TTD-A or p8) is the smallest TFIIH subunit, shuttling between a free and a TFIIH-bound state. Its dimerization properties allow it to shift from a homodimeric state, in the absence of a functional partner, to a heterodimeric structure, enabling dynamic binding to TFIIH.

View Article and Find Full Text PDF

We report the implementation of coordination chemistry onto the generation of new types of metallosupramolecular complexes with laterally appended cationic moieties for DNA binding in buffered aqueous media. Utilization of an N,N,O-type coordination pocket along with an octahedral zinc(II) metal ion allowed us to obtain mono- and tetranuclear complexes in both solution and solid state, as confirmed by NMR spectroscopy and single-crystal X-ray diffraction, respectively. By using isothermal titration calorimetry and gel electrophoresis, multiply charged cationic assemblies were observed to effectively bind to DNA through multivalent electrostatic interactions.

View Article and Find Full Text PDF

We provide a proof-of-principle that coordination chemistry drives the in situ self-assembly of an inactive ligand into a multivalent cluster capable of effectively complexing DNA. We show that metal coordination and scavenging can be used to switch the multivalency of the system. Thus, controlled DNA complexation and decomplexation could be achieved.

View Article and Find Full Text PDF

Mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1) is an 8.5 kDa protein linked to regulation of γ-tubulin ring complexes (γTuRCs), which are involved in nucleation of microtubules. Despite its small size, MOZART1 represents a challenging target for detailed characterization in vitro.

View Article and Find Full Text PDF

Thanatos associated protein 11 (THAP11) is a cell cycle and cell growth regulator differentially expressed in cancer cells. THAP11 belongs to a distinct family of transcription factors recognizing specific DNA sequences via an atypical zinc finger motif and regulating diverse cellular processes. Outside the extensively characterized DNA-binding domain, THAP proteins vary in size and predicted domains, for which structural data are still lacking.

View Article and Find Full Text PDF

We report herein the implementation of a dynamic covalent chemistry approach to the generation of multivalent clusters for DNA recognition. We show that biomolecular clusters can be expressed in situ by a programmed self-assembly process using chemoselective ligations. The cationic clusters are shown, by fluorescence displacement assay, gel electrophoresis and isothermal titration calorimetry, to effectively complex DNA through multivalent interactions.

View Article and Find Full Text PDF

The THAP (THanatos-Associated Protein) domain is an evolutionary conserved C2CH zinc-coordinating domain shared with a large family of cellular factors (THAP proteins). Many members of the THAP family act as transcription factors that control cell proliferation, cell cycle progression, angiogenesis, apoptosis and epigenetic gene silencing. They recognize specific DNA sequences in the promoters of target genes and subsequently recruit effector proteins.

View Article and Find Full Text PDF

The transcription factor THAP1 (THanatos Associated Protein 1) has emerged recently as the cause of DYT6 primary dystonia, a type of rare, familial and mostly early-onset syndrome that leads to involuntary muscle contractions. Many of the mutations described in the DYT6 patients fall within the sequence-specific DNA-binding domain (THAP domain) of THAP1 and are believed to negatively affect DNA binding. Here, we have used an integrated approach combining spectroscopic (NMR, fluorescence, DSF) and calorimetric (ITC) methods to evaluate the effect of missense mutations, within the THAP domain, on the structure, stability and DNA binding.

View Article and Find Full Text PDF

This study is focused on the elucidation of the functional role of the mobile β2α2 loop in the α-L-arabinofuranosidase from Thermobacillus xylanilyticus, and particularly on the roles of loop residues H98 and W99. Using site-directed mutagenesis, coupled to characterization methods including isothermal titration calorimetry (ITC) and saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy, and molecular dynamics simulations, it has been possible to provide a molecular level view of interactions and the consequences of mutations. Binding of para-nitrophenyl α-L-arabinofuranoside (pNP-α-l-Araf) to the wild-type arabinofuranosidase was characterized by K(d) values (0.

View Article and Find Full Text PDF

Human THAP1 is the prototype of a large family of cellular factors sharing an original THAP zinc-finger motif responsible for DNA binding. Human THAP1 regulates endothelial cell proliferation and G1/S cell-cycle progression, through modulation of pRb/E2F cell-cycle target genes including rrm1. Recently, mutations in THAP1 have been found to cause DYT6 primary torsion dystonia, a human neurological disease.

View Article and Find Full Text PDF

The three-dimensional structure of the outer membrane protein A from Klebsiella pneumoniae transmembrane domain was determined by NMR.This protein induces specific humoral and cytotoxic responses, and is a potent carrier protein. This is one of the largest integral membrane proteins(210 residues) for which nearly complete resonance assignment, including side chains, has been achieved so far.

View Article and Find Full Text PDF

Background: DNA polymerase beta (pol beta), the error-prone DNA polymerase of single-stranded DNA break repair as well as base excision repair pathways, is overexpressed in several tumors and takes part in chemotherapeutic agent resistance, like that of cisplatin, through translesion synthesis. For this reason pol beta has become a therapeutic target. Several inhibitors have been identified, but none of them presents a sufficient affinity and specificity to become a drug.

View Article and Find Full Text PDF

THAP1, the founding member of a previously uncharacterized large family of cellular proteins (THAP proteins), is a sequence-specific DNA-binding factor that has recently been shown to regulate cell proliferation through modulation of pRb/E2F cell cycle target genes. THAP1 shares its DNA-binding THAP zinc finger domain with Drosophila P element transposase, zebrafish E2F6, and several nematode proteins interacting genetically with the retinoblastoma protein pRb. In this study, we report the three-dimensional structure and structure-function relationships of the THAP zinc finger of human THAP1.

View Article and Find Full Text PDF

The human general transcription factor TFIIH is involved in both transcription and DNA repair. We have identified a structural domain in the core subunit of TFIIH, p62, which is absolutely required for DNA repair activity through the nucleotide excision repair pathway. Using coimmunoprecipitation experiments, we showed that this activity involves the interaction between the N-terminal domain of p62 and the 3' endonuclease XPG, a major component of the nucleotide excision repair machinery.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9r6h0ejjus411ta26fdrh09udo2fsgns): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once