The ideal single-photon source displaying high brightness and purity, emission on-demand, mature integration, practical communication wavelength (i.e., in the telecom range), and operating at room temperature does not exist yet.
View Article and Find Full Text PDFIntensity and polarization are two fundamental components of light. Independent control of them is of tremendous interest in many applications. In this paper, we propose a general vectorial encryption method, which enables arbitrary far-field light distribution with the local polarization, including orientations and ellipticities, decoupling intensity from polarization across a broad bandwidth using geometric phase metasurfaces.
View Article and Find Full Text PDFIt is shown that substrate pixelisation before epitaxial growth can significantly impact the emission color of semiconductor heterostructures. The wavelength emission from InGaN/GaN quantum wells can be shifted from blue to yellow simply by reducing the mesa size from 90 × 90 µm to 10 × 10 µm of the patterned silicon used as the substrate. This color shift is mainly attributed to an increase of the quantum well thickness when the mesa size decreases.
View Article and Find Full Text PDFControlling light properties with diffractive planar elements requires full-polarization channels and accurate reconstruction of optical signal for real applications. Here, we present a general method that enables wavefront shaping with arbitrary output polarization by encoding both phase and polarization information into pixelated metasurfaces. We apply this concept to convert an input plane wave with linear polarization to a holographic image with arbitrary spatial output polarization.
View Article and Find Full Text PDFAllowing subwavelength-scale-digitization of optical wavefronts to achieve complete control of light at interfaces, metasurfaces are particularly suited for the realization of planar phase-holograms that promise new applications in high-capacity information technologies. Similarly, the use of orbital angular momentum of light as a new degree of freedom for information processing can further improve the bandwidth of optical communications. However, due to the lack of orbital angular momentum selectivity in the design of conventional holograms, their utilization as an information carrier for holography has never been implemented.
View Article and Find Full Text PDF