We developed a mathematical model to simulate dynamics associated with the proliferation of Geobacter and ultimately optimize cellular operation by analyzing the interaction of its components. The model comprises two segments: an initial part comprising a logistic form and a subsequent segment that incorporates acetate oxidation as a saturation term for the microbial nutrient medium. Given that four parameters can be obtained by minimizing the square root of the mean square error between experimental Geobacter growth and the mathematical model, the model underscores the importance of incorporating nonlinear terms.
View Article and Find Full Text PDFElectron microscopy is one of the tools required to characterize cellular structures. However, the procedure is complicated and expensive due to the sample preparation for observation. Atomic force microscopy (AFM) is a very useful characterization technique due to its high resolution in three dimensions and because of the absence of any requirement for vacuum and sample conductivity.
View Article and Find Full Text PDFThis study reports a green, simple, and fast method for the synthesis of gold and silver nanoparticles using natural antioxidant compounds. The aqueous extract from dried rosehips (pseudofruit of L.) was used as a reducing and capping agent of HAuCl and AgNO during the noble metal colloid synthesis at room temperature and no other chemical reagent was used.
View Article and Find Full Text PDFMagnesium oxide nanoparticles (MgO NPs) were obtained by the calcination of precursor microparticles (PM) synthesized by a novel triethylamine-based precipitation method. Scanning electron microscopy (SEM) revealed a mean size of 120 nm for the MgO NPs. The results of the characterizations for MgO NPs support the suggestion that our material has the capacity to attack, and have an antibacterial effect against, Gram-negative and Gram-positive bacteria strains.
View Article and Find Full Text PDF