Since biomedical science has become increasingly data-intensive, acquisition of computational and quantitative skills by science students has become more important. For non-science students, an introduction to biomedical databases and their applications promotes the development of a scientifically literate population. Because typical college introductory biology laboratories do not include experiences of this type, we present a bioinformatics module that can easily be included in a 90-minute session of a biology course for both majors and non-majors.
View Article and Find Full Text PDFJ Am Med Inform Assoc
July 2004
Objective: The aim of this study was to investigate relations among different aspects in supervised word sense disambiguation (WSD; supervised machine learning for disambiguating the sense of a term in a context) and compare supervised WSD in the biomedical domain with that in the general English domain.
Methods: The study involves three data sets (a biomedical abbreviation data set, a general biomedical term data set, and a general English data set). The authors implemented three machine-learning algorithms, including (1) naïve Bayes (NBL) and decision lists (TDLL), (2) their adaptation of decision lists (ODLL), and (3) their mixed supervised learning (MSL).