A series of N-benzoyl-4-[(2,6-dichlorobenzoyl)amino]-L-phenylalanine derivatives was prepared in order to optimize the substitution on the N-benzoyl moiety for VCAM/VLA-4 antagonist activity. Disubstitution in the 2- and 6-positions is favored and a range of small alkyl and halogen are tolerated. A model of the bioactive conformation of these compounds is proposed.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2002
A systematic structure-activity relationship investigation of the lead compound 1 resulted the identification of several N-[(substituted alkyl)cycloalkanoyl]-4-[((2,6-dichlorophenyl)carbonyl)amino]-L-phenylalanine derivatives as potent VCAM/VLA-4 antagonists. The data are consistent with a model of these compounds in which these alkanoylphenylalanines reside in a compact gauche (-) bioactive conformation.
View Article and Find Full Text PDFA structure-based focused library approach was employed in an effort to identify more lipophilic replacements for the N-benzylpyroglutamyl group of the VCAM/VLA-4 antagonist 2. This effort led to the discovery of two new classes of potent antagonists characterized by the N-(alpha-phenylcyclopentanoyl- and the N-(2,6-dimethylbenzoyl)-derivatives 60 and 64.
View Article and Find Full Text PDFA series of N-benzylpyroglutamyl-L-phenylalanine derivatives bearing carbamoyl substituents in the 3- or 4-positions was prepared and assayed for inhibition of the interaction between VCAM and VLA-4. Potent inhibition was observed in a number of analogues with substitution in the 4-position favored over the 3-position. A crystal structure of the key intermediate 25 indicates that it accesses a low energy conformation which closely matches key pharmacophores of a structurally characterized cyclic peptide.
View Article and Find Full Text PDF