Publications by authors named "Virginia S Lioy"

Streptomyces are renowned for their prolific production of specialized metabolites with applications in medicine and agriculture. These multicellular bacteria present a sophisticated developmental cycle and play a key role in soil ecology. Little is known about the impact of Streptomyces phage on bacterial physiology.

View Article and Find Full Text PDF

Bacterial chromosomes are large molecules that need to be highly compacted to fit inside the cells. Chromosome compaction must facilitate and maintain key biological processes such as gene expression and DNA transactions (replication, recombination, repair, and segregation). Chromosome and chromatin 3D-organization in bacteria has been a puzzle for decades.

View Article and Find Full Text PDF

Streptomyces are prolific producers of specialized metabolites with applications in medicine and agriculture. Remarkably, these bacteria possess a large linear chromosome that is genetically compartmentalized: core genes are grouped in the central part, while the ends are populated by poorly conserved genes including antibiotic biosynthetic gene clusters. The genome is highly unstable and exhibits distinct evolutionary rates along the chromosome.

View Article and Find Full Text PDF

Streptomyces are prolific producers of specialized metabolites with applications in medicine and agriculture. These bacteria possess a large linear chromosome genetically compartmentalized: core genes are grouped in the central part, while terminal regions are populated by poorly conserved genes. In exponentially growing cells, chromosome conformation capture unveiled sharp boundaries formed by ribosomal RNA (rrn) operons that segment the chromosome into multiple domains.

View Article and Find Full Text PDF

Bacteria of the genus Streptomyces are prolific producers of specialized metabolites, including antibiotics. The linear chromosome includes a central region harboring core genes, as well as extremities enriched in specialized metabolite biosynthetic gene clusters. Here, we show that chromosome structure in Streptomyces ambofaciens correlates with genetic compartmentalization during exponential phase.

View Article and Find Full Text PDF

Just as in eukaryotes, high-throughput chromosome conformation capture (Hi-C) data have revealed nested organizations of bacterial chromosomes into overlapping interaction domains. In this chapter, we present a multiscale analysis framework aiming at capturing and quantifying these properties. These include both standard tools (e.

View Article and Find Full Text PDF

SMC complexes are widely conserved ATP-powered DNA-loop-extrusion motors indispensable for organizing and faithfully segregating chromosomes. How SMC complexes translocate along DNA for loop extrusion and what happens when two complexes meet on the same DNA molecule is largely unknown. Revealing the origins and the consequences of SMC encounters is crucial for understanding the folding process not only of bacterial, but also of eukaryotic chromosomes.

View Article and Find Full Text PDF

Since the nucleoid was isolated from bacteria in the 1970s, two fundamental questions emerged and are still in the spotlight: how bacteria organize their chromosomes to fit inside the cell and how nucleoid organization enables essential biological processes. During the last decades, knowledge of bacterial chromosome organization has advanced considerably, and today, such chromosomes are considered to be highly organized and dynamic structures that are shaped by multiple factors in a multiscale manner. Here we review not only the classical well-known factors involved in chromosome organization but also novel components that have recently been shown to dynamically shape the 3D structuring of the bacterial genome.

View Article and Find Full Text PDF

Three types of structurally related structural maintenance of chromosomes (SMC) complexes, referred to as condensins, have been identified in bacteria. Smc-ScpAB is present in most bacteria, whereas MukBEF is found in enterobacteria and MksBEF is scattered over the phylogenic tree. The contributions of these condensins to chromosome management were characterized in Pseudomonas aeruginosa, which carries both Smc-ScpAB and MksBEF.

View Article and Find Full Text PDF

The development of next-generation sequencing technologies has allowed the application of different methods dedicated to the study of DNA-protein interactions and chromosome conformation to entire bacterial genome. By combining these approaches, the role of various parameters and factors involved in gene expression and chromosome organization can be disclosed at the molecular level over the full genome. Here we describe two methods that profoundly revolutionized our vision of DNA-protein interactions and spatial organization of chromosomes.

View Article and Find Full Text PDF

As in eukaryotes, bacterial genomes are not randomly folded. Bacterial genetic information is generally carried on a circular chromosome with a single origin of replication from which two replication forks proceed bidirectionally toward the opposite terminus region. Here, we investigate the higher-order architecture of the Escherichia coli genome, showing its partition into two structurally distinct entities by a complex and intertwined network of contacts: the replication terminus (ter) region and the rest of the chromosome.

View Article and Find Full Text PDF

Bacteria have evolved complex regulatory controls in response to various environmental stresses. Protein toxins of the ζ superfamily, found in prominent human pathogens, are broadly distributed in nature. We show that ζ is a uridine diphosphate-N-acetylglucosamine (UNAG)-dependent ATPase whose activity is inhibited by stoichiometric concentrations of ε antitoxin.

View Article and Find Full Text PDF

In Firmicutes, small homodimeric ParA-like (δ2) and ParB-like (ω2) proteins, in concert with cis-acting plasmid-borne parS and the host chromosome, secure stable plasmid inheritance in a growing bacterial population. This study shows that (ω:YFP)2 binding to parS facilitates plasmid clustering in the cytosol. (δ:GFP)2 requires ATP binding but not hydrolysis to localize onto the cell's nucleoid as a fluorescent cloud.

View Article and Find Full Text PDF

A fraction of otherwise antimicrobial-sensitive Bacillus subtilis cells, called persisters, are phenotypically tolerant of antimicrobial treatment. We report that, independently of B. subtilis' growth phase, transient ζ toxin expression induces a dormant state and alters cellular responses so that cells are more sensitive to antimicrobials with different modes of action.

View Article and Find Full Text PDF

In Gram-negative bacteria, acquired 16S rRNA methyltransferases ArmA and NpmA confer high-level resistance to all clinically useful aminoglycosides by modifying, respectively, G1405 and A1408 in the A-site. These enzymes must coexist with several endogenous methyltransferases that are essential for fine-tuning of the decoding center, such as RsmH and RsmI in Escherichia coli, which methylate C1402 and RsmF C1407. The resistance methyltransferases have a contrasting distribution--ArmA has spread worldwide, whereas a single clinical isolate producing NpmA has been reported.

View Article and Find Full Text PDF

The ζε module consists of a labile antitoxin protein, ε, which in dimer form (ε(2)) interferes with the action of the long-living monomeric ζ phosphotransferase toxin through protein complex formation. Toxin ζ, which inhibits cell wall biosynthesis and may be bactericide in nature, at or near physiological concentrations induces reversible cessation of Bacillus subtilis proliferation (protective dormancy) by targeting essential metabolic functions followed by propidium iodide (PI) staining in a fraction (20-30%) of the population and selects a subpopulation of cells that exhibit non-inheritable tolerance (1-5×10(-5)). Early after induction ζ toxin alters the expression of ∼78 genes, with the up-regulation of relA among them.

View Article and Find Full Text PDF

Vancomycin or erythromycin resistance and the stability determinants, δω and ωεζ, of Enterococci and Streptococci plasmids are genetically linked. To unravel the mechanisms that promoted the stable persistence of resistance determinants, the early stages of Streptococcus pyogenes pSM19035 partitioning were biochemically dissected. First, the homodimeric centromere-binding protein, ω2, bound parS DNA to form a short-lived partition complex 1 (PC1).

View Article and Find Full Text PDF

pSM19035 is a low-copy-number theta-replicating plasmid, which belongs to the Inc18 family. Plasmids of this family, which show a modular organization, are functional in evolutionarily diverse bacterial species of the Firmicutes Phylum. This review summarizes our understanding, accumulated during the last 20 years, on the genetics, biochemistry, cytology and physiology of the five pSM19035 segregation (seg) loci, which map outside of the minimal replicon.

View Article and Find Full Text PDF

The emergence and spread of pathogenic bacteria that have become resistant to multiple antibiotics through lateral gene transfer have created the need of novel antimicrobials. Toxin-antitoxin (TA) modules, which have been implicated in plasmid maintenance and stress management, are ubiquitous among plasmids from vancomycin or methicillin resistant bacteria. In the Streptococcus pyogenes pSM19035-encoded TA loci, the labile epsilon antitoxin binds to free zeta toxin and neutralizes it.

View Article and Find Full Text PDF

The toxin-antitoxin operon of pSM19035 encodes three proteins: the omega global regulator, the epsilon labile antitoxin and the stable zeta toxin. Accumulation of zeta toxin free of epsilon antitoxin induced loss of cell proliferation in both Bacillus subtilis and Escherichia coli cells. Induction of a zeta variant (zetaY83C) triggered stasis, in which B.

View Article and Find Full Text PDF

In order to evaluate liposomes as vehicle for oral vaccines the characterization and stability of polymerized and non-polymerized liposomes were examined. Mixtures of 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3 phosphocholine) (DC8,9PC) with saturated 1,2-dimiristoyl-sn-glycero-3-phosphocholine in molar ratio 1:1 were used. Saturated and non-saturated lipids were combined to give a chemically modified membrane by UV polymerization derived from DC8,9PC.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: