A fundamental challenge for personalized medicine is to capture enough of the complexity of an individual patient to determine an optimal way to keep them healthy or restore their health. This will require personalized computational models of sufficient resolution and with enough mechanistic information to provide actionable information to the clinician. Such personalized models are increasingly referred to as medical digital twins.
View Article and Find Full Text PDFMedical digital twins are computational models of human biology relevant to a given medical condition, which are tailored to an individual patient, thereby predicting the course of disease and individualized treatments, an important goal of personalized medicine. The immune system, which has a central role in many diseases, is highly heterogeneous between individuals, and thus poses a major challenge for this technology. In February 2023, an international group of experts convened for two days to discuss these challenges related to immune digital twins.
View Article and Find Full Text PDFThe movement of plankton is often dictated by local flow patterns, particularly during storms and in environments with strong flows. Reefs, macrophyte beds, and other immersed structures can provide shelter against washout and drastically alter the distributions of plankton as these structures redirect and slow the flows through them. Advection-diffusion and agent-based models are often used to describe the movement of plankton within marine and fresh water environments and across multiple scales.
View Article and Find Full Text PDFAntigenically variable RNA viruses are significant contributors to the burden of infectious disease worldwide. One reason for their ubiquity is their ability to escape herd immunity through rapid antigenic evolution and thereby to reinfect previously infected hosts. However, the ways in which these viruses evolve antigenically are highly diverse.
View Article and Find Full Text PDFCommun Stat Theory Methods
January 1997
Planning a study using the General Linear Univariate Model often involves sample size calculation based on a variance estimated in an earlier study. Noncentrality, power, and sample size inherit the randomness. Additional complexity arises if the estimate has been censored.
View Article and Find Full Text PDF