Publications by authors named "Virginia Ojeda"

Inactivation of /Merlin causes the autosomal-dominant cancer predisposition syndrome familial neurofibromatosis type 2 (NF2) and contributes to the development of malignant pleural mesothelioma (MPM). To develop a targeted therapy for -mutant tumors, we have exploited the recent realization that Merlin loss drives tumorigenesis by activating the E3 ubiquitin ligase CRL4, thereby inhibiting the Hippo pathway component Lats. Here, we show that MLN4924, a NEDD8-activating enzyme (NAE) inhibitor, suppresses CRL4 and attenuates activation of YAP in -mutant tumor cells.

View Article and Find Full Text PDF

Renal cell carcinomas with unclassified histology (uRCC) constitute a significant portion of aggressive non-clear cell renal cell carcinomas that have no standard therapy. The oncogenic drivers in these tumours are unknown. Here we perform a molecular analysis of 62 high-grade primary uRCC, incorporating targeted cancer gene sequencing, RNA sequencing, single-nucleotide polymorphism array, fluorescence in situ hybridization, immunohistochemistry and cell-based assays.

View Article and Find Full Text PDF

Coronin 1A (Coro1A) is involved in cytoskeletal and signaling events, including the regulation of Rac1 GTPase- and myosin II-dependent pathways. Mutations that generate truncated or unstable Coro1A proteins cause immunodeficiencies in both humans and rodents. However, in the case of the peripheral T-cell-deficient (Ptcd) mouse strain, the immunodeficiency is caused by a Glu-26-Lys mutation that targets a surface-exposed residue unlikely to affect the intramolecular architecture and stability of the protein.

View Article and Find Full Text PDF

Rac1 regulates lamellipodium formation, myosin II-dependent contractility, and focal adhesions during cell migration. While the spatiotemporal assembly of those processes is well characterized, the signaling mechanisms involved remain obscure. We report here that the cytoskeleton-related Coronin1A and -1B proteins control a myosin II inactivation-dependent step that dictates the intracellular dynamics and cytoskeletal output of active Rac1.

View Article and Find Full Text PDF

The catalytic activity of GDP/GTP exchange factors (GEFs) is considered critical to maintain the typically high activity of Rho GTPases found in cancer cells. However, the large number of them has made it difficult to pinpoint those playing proactive, nonredundant roles in tumors. In this work, we have investigated whether GEFs of the Vav subfamily exert such specific roles in skin cancer.

View Article and Find Full Text PDF

The functional cycle of the Rac1 GTPase involves a large number of steps, including post-translational processing, cytosolic sequestration by RhoGDIs, translocation to specific subcellular localizations, activation by GDP/GTP exchange, inactivation by GTP hydrolysis, and re-formation of cytosolic Rac1/RhoGDI inhibitory complexes. Here, we summarize the current knowledge about the regulation of those steps. In addition, we discuss a recently described, cytoskeletal-dependent feed-back loop that favors the efficient translocation and activation of Rac subfamily proteins during cell signaling.

View Article and Find Full Text PDF

The activation of the Rac1 GTPase during cell signalling entails its translocation from the cytosol to membranes, release from sequestering Rho GDP dissociation inhibitors (RhoGDI), and GDP/GTP exchange. In addition to those steps, we show here that optimal Rac1 activation during cell signalling requires the engagement of a downstream, cytoskeletal-based feedback loop nucleated around the cytoskeletal protein coronin 1A and the Rac1 exchange factor ArhGEF7. These two proteins form a cytosolic complex that, upon Rac1-driven F-actin polymerization, translocates to juxtamembrane areas where it expands the pool of activated, membrane-bound Rac1.

View Article and Find Full Text PDF