Protein kinases are key components of multiple cell signaling pathways. Several receptor-like cytoplasmic kinases (RLCKs) have demonstrated roles in immune and developmental signaling across various plant species, making them of interest in the study of phosphorylation-based signal relay. Here, we present our investigation of a subgroup of RLCKs in Arabidopsis thaliana.
View Article and Find Full Text PDF, commonly known as rapeseed or canola, is an economically valuable oilseed crop grown throughout Canada that currently faces several challenges due to industrial farming practices as well as a changing climate. Calcium-dependent protein kinases (CDPKs) are key regulators of stress signaling in multiple plant species. CDPKs sense changes in cellular calcium levels via a calmodulin-like domain and are able to respond to these changes via their protein kinase domain.
View Article and Find Full Text PDFCarbohydrates are produced in green tissues through photosynthesis and then transported to sink tissues. Carbon partitioning is a strategic process, fine regulated, involving specific sucrose transporters in each connecting tissue. Here we report that a screening of an Arabidopsis transcription factor (TF) library using the homeodomain-leucine zipper I member AtHB23 as bait, allowed identifying the TF AtPHL1 interacting with the former.
View Article and Find Full Text PDFThe sunflower (Helianthus annuus) homeodomain-leucine zipper I transcription factor HaHB11 conferred differential phenotypic features when it was expressed in Arabidopsis, alfalfa, and maize plants. Such differences were increased biomass, seed yield, and tolerance to flooding. To elucidate the molecular mechanisms leading to such traits and identify HaHB11-interacting proteins, a yeast two-hybrid screening of an Arabidopsis cDNA library was carried out using HaHB11 as bait.
View Article and Find Full Text PDF