Publications by authors named "Virginia Lockamy"

Background The COVID-19 pandemic challenges our ability to safely treat breast cancer patients and requires revisiting current techniques to evaluate optimal strategies. Potential long-term sequelae of breast radiation have been addressed by deep inspiration breath-hold (DIBH), prone positioning, and four-dimensional computed tomography (4DCT) average intensity projection (AveIP)-based planning techniques. Dosimetric comparisons to determine the optimal technique to minimize the normal tissue dose for left-sided breast cancers have not been performed.

View Article and Find Full Text PDF

Purpose: A recent randomized phase III clinical trial in patients with glioblastoma demonstrated the efficacy of tumor treating fields (TTFields), in which alternating electric fields are applied via transducer arrays to a patient's scalp. This treatment, when added to standard of care therapy, was shown to increase overall survival from 16 to 20.9 months.

View Article and Find Full Text PDF

Purpose: To implement clinical stereotactic body radiation therapy (SBRT) using a small animal radiation research platform (SARRP) in a genetically engineered mouse model of lung cancer.

Methods And Materials: A murine model of multinodular Kras-driven spontaneous lung tumors was used for this study. High-resolution cone beam computed tomography (CBCT) imaging was used to identify and target peripheral tumor nodules, whereas off-target lung nodules in the contralateral lung were used as a nonirradiated control.

View Article and Find Full Text PDF

Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma accounting for approximately half of all cutaneous T-cell lymphomas. Radiation therapy is an effective treatment for early stage MF and has been shown to result in long-term disease-free intervals, with even curative potential. Radiation is also effective as palliative treatment for the localized lesion resistant to the topic or other treatments.

View Article and Find Full Text PDF

Purpose: Incidental radiation dose to the heart and lung during breast radiation therapy (RT) has been associated with an increased risk of cardiopulmonary morbidity. We conducted a prospective trial to determine if RT with the Active Breathing Coordinator (ABC) can reduce the mean heart dose (MHD) by ≥20% and dose to the lung.

Methods And Materials: Patients with stages 0-III left breast cancer (LBC) were enrolled and underwent simulation with both free breathing (FB) and ABC for comparison of dosimetry.

View Article and Find Full Text PDF

Purpose: The planning procedure for Valencia and Leipzig surface applicators (VLSAs) (Nucletron, Veenendaal, The Netherlands) differs substantially from CT-based planning; the unfamiliarity could lead to significant errors. This study applies failure modes and effects analysis (FMEA) to high-dose-rate (HDR) skin brachytherapy using VLSAs to ensure safety and quality.

Method: A multidisciplinary team created a protocol for HDR VLSA skin treatments and applied FMEA.

View Article and Find Full Text PDF

Sickle cell disease patients receiving hydroxyurea (HU) therapy have shown increases in the production of nitric oxide (NO) metabolites, which include iron nitrosyl hemoglobin (HbNO), nitrite, and nitrate. However, the exact mechanism by which HU forms HbNO in vivo is not understood. Previous studies indicate that the reaction of oxyhemoglobin (oxyHb) or deoxyhemoglobin (deoxyHb) with HU are too slow to account for in vivo HbNO production.

View Article and Find Full Text PDF

Although it has been shown that hydroxyurea (HU) therapy produces measurable amounts of nitric oxide (NO) metabolites, including iron nitrosyl hemoglobin (HbNO) in patients with sickle cell disease, the in vivo mechanism for formation of these is not known. Much in vitro data and some in vivo data indicates that HU is the NO donor, but other studies suggest a role for nitric oxide synthase (NOS). In this study, we confirm that the NO-forming reactions of HU with hemoglobin (Hb) or other blood constituents is too slow to account for NO production measured in vivo.

View Article and Find Full Text PDF

One mechanism by which nitric oxide (NO) has been proposed to benefit patients with sickle cell disease is by reducing intracellular polymerization of sickle hemoglobin (HbS). In this study we have examined the ability of nitric oxide to inhibit polymerization by measuring the solubilizing effect of iron nitrosyl sickle hemoglobin (HbS-NO). Electron paramagnetic resonance spectroscopy was used to confirm that, as found in vivo, the primary type of NO ligation produced in our partially saturated NO samples is pentacoordinate alpha-nitrosyl.

View Article and Find Full Text PDF