Unlabelled: Hepatitis C virus (HCV) infects hepatocytes through two different routes: (i) cell-free particle diffusion followed by engagement with specific cellular receptors and (ii) cell-to-cell direct transmission mediated by mechanisms not well defined yet. HCV exits host cells in association with very-low-density lipoprotein (VLDL) components. VLDL particles contain apolipoproteins B (ApoB) and E (ApoE), which are required for viral assembly and/or infectivity.
View Article and Find Full Text PDFUnlabelled: Although it is well established that hepatitis C virus (HCV) entry into hepatocytes depends on clathrin-mediated endocytosis, the possible roles of clathrin in other steps of the viral cycle remain unexplored. Thus, we studied whether cell culture-derived HCV (HCVcc) exocytosis was altered after clathrin interference. Knockdown of clathrin or the clathrin adaptor AP-1 in HCVcc-infected human hepatoma cell cultures impaired viral secretion without altering intracellular HCVcc levels or apolipoprotein B (apoB) and apoE exocytosis.
View Article and Find Full Text PDFCervical cancer is caused by persistent high-risk human papillomavirus (HR-HPV) infection and represents the second most frequent gynecological malignancy in the world. The HPV-16 type accounts for up to 55% of all cervical cancers. The HPV-16 oncoproteins E6 and E7 are necessary for induction and maintenance of malignant transformation and represent tumor-specific antigens for targeted cytotoxic T lymphocyte-mediated immunotherapy.
View Article and Find Full Text PDFHepatocytes are highly polarized cells where intercellular junctions, including tight junctions (TJs), determine the polarity. Recently, the TJ-associated proteins claudin-1 and occludin have been implicated in hepatitis C virus (HCV) entry and spread. Nevertheless, cell line-based experimental systems that exhibit hepatocyte-like polarity and permit robust infection and virion production are not currently available.
View Article and Find Full Text PDF