Despite clear evidence that some pollinator populations are declining, our ability to predict pollinator communities prone to collapse or species at risk of local extinction is remarkably poor. Here, we develop a model grounded in the structuralist approach that allows us to draw sound predictions regarding the temporal persistence of species in mutualistic networks. Using high-resolution data from a six-year study following 12 independent plant-pollinator communities, we confirm that pollinator species with more persistent populations in the field are theoretically predicted to tolerate a larger range of environmental changes.
View Article and Find Full Text PDFPLoS Comput Biol
January 2024
Until recently, most ecological network analyses investigating the effects of species' declines and extinctions have focused on a single type of interaction (e.g. feeding).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2019
Understanding the stability of ecological communities is a matter of increasing importance in the context of global environmental change. Yet it has proved to be a challenging task. Different metrics are used to assess the stability of ecological systems, and the choice of one metric over another may result in conflicting conclusions.
View Article and Find Full Text PDFFood webs-networks of predators and prey-have long been known to exhibit "intervality": species can generally be ordered along a single axis in such a way that the prey of any given predator tend to lie on unbroken compact intervals. Although the meaning of this axis-usually identified with a "niche" dimension-has remained a mystery, it is assumed to lie at the basis of the highly non-trivial structure of food webs. With this in mind, most trophic network modelling has for decades been based on assigning species a niche value by hand.
View Article and Find Full Text PDFUnderstanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic "nested" structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects.
View Article and Find Full Text PDFWe explore the hypothesis that the relative abundance of feedback loops in many empirical complex networks is severely reduced owing to the presence of an inherent global directionality. Aimed at quantifying this idea, we propose a simple probabilistic model in which a free parameter γ controls the degree of inherent directionality. Upon strengthening such directionality, the model predicts a drastic reduction in the fraction of loops which are also feedback loops.
View Article and Find Full Text PDFWhy are large, complex ecosystems stable? Both theory and simulations of current models predict the onset of instability with growing size and complexity, so for decades it has been conjectured that ecosystems must have some unidentified structural property exempting them from this outcome. We show that trophic coherence--a hitherto ignored feature of food webs that current structural models fail to reproduce--is a better statistical predictor of linear stability than size or complexity. Furthermore, we prove that a maximally coherent network with constant interaction strengths will always be linearly stable.
View Article and Find Full Text PDFUnderstanding the causes and effects of network structural features is a key task in deciphering complex systems. In this context, the property of network nestedness has aroused a fair amount of interest as regards ecological networks. Indeed, Bastolla et al.
View Article and Find Full Text PDF