As a continuation of our research on the Baccharis genus, the evaluation of the antioxidant effect by TRAP and TBARS assays of three isolated compounds from n-butanol fractions of B. articulata and B. usterii is reported.
View Article and Find Full Text PDFObjectives: The aim of this study was to investigate the in-vitro effect of rutin on glucose uptake in an insulin target (soleus muscle) and the mechanism of action involved.
Methods: Isolated soleus muscles from rats were treated with rutin (500 μm) with or without the following inhibitors; hydroxy-2-naphthalenylmethylphosphonic acid trisacetoxymethyl ester (HNMPA(AM)3 ), an insulin receptor tyrosine kinase activity inhibitor, wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), RO318220, an inhibitor of protein kinase C, colchicine, a microtubule-depolymerizing agent, PD98059, an inhibitor of mitogen-activated protein kinase kinase (MEK), and cycloheximide, an inhibitor of protein synthesis on fresh Krebs Ringer-bicarbonate plus [U-(14) C]-2-deoxy-d-glucose (0.1 μCi/ml).
The aim of the study was to investigate the in vitro effect and the mechanism of action of kaempferitrin on glucose uptake in an insulin target (soleus muscle). A stimulatory effect of kaempferitrin on glucose uptake was observed when rat soleus muscle was incubated with 10, 100 and 1000 ηM of this flavonoid glycoside. The presence of specific insulin signaling inhibitors, such as wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K), RO318220, an inhibitor of protein kinase C (PKC), PD98059, an inhibitor of mitogen-activated protein kinase (MEK), HNMPA(AM)3, an insulin receptor tyrosine kinase activity inhibitor, colchicine, a microtubule-depolymerizing agent, SB239063, an inhibitor of P38 MAPK and cycloheximide, an inhibitor of protein synthesis showed that kaempferitrin triggers different metabolic and nuclear pathways in skeletal muscle.
View Article and Find Full Text PDFRutin is a flavonoid with several pharmacological properties and it has been demonstrated that rutin can modulate glucose homeostasis. In skeletal muscle, an increase in intracellular calcium concentration may induce glucose transporter-4 (GLUT-4) translocation with consequent glucose uptake. The aim of this study was to investigate the effect of rutin and intracellular pathways on calcium uptake as well as the involvement of calcium in glucose uptake in skeletal muscle.
View Article and Find Full Text PDFA stimulatory effect of apigenin-6-C-β-fucopyranoside (1) on glucose uptake was observed when rat soleus muscle was incubated with 1, 10 and 100 μM of this flavonoid glycoside. The presence of specific insulin signaling inhibitors, such as wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K), RO318220, an inhibitor of protein kinase C (PKC), PD98059, an inhibitor of mitogen-activated protein kinase (MEK), and HNMPA(AM)₃, an insulin receptor tyrosine kinase activity inhibitor showed that apigenin-6-C-β-fucopyranoside triggers different metabolic pathways in skeletal muscle. The oral administration of crude extract, fractions and isolated flavonoids (apigenin-6-C-β-fucopyranoside (1) and apigenin-6-C-(2″-O-α-rhamnopyranosyl)-β-fucopyranoside (2)) from Averrhoa carambola leaves exhibited a potential hypoglycemic activity in hyperglycemic normal rats.
View Article and Find Full Text PDFContext: Cecropia glaziovii Snethl. (Cecropiaceae), commonly known as "embaúba-vermelha", is widely distributed throughout Latin America and has been reported in Brazilian folk medicine to treat cough, asthma, high blood pressure and inflammation.
Objective: Investigate the hepatoprotective properties of crude hydroethanolic extract of C.