Publications by authors named "Virginia Burger"

The bacterial toxin-antitoxin system CcdB-CcdA provides a mechanism for the control of cell death and quiescence. The antitoxin protein CcdA is a homodimer composed of two monomers that each contain a folded N-terminal region and an intrinsically disordered C-terminal arm. Binding of the intrinsically disordered C-terminal arm of CcdA to the toxin CcdB prevents CcdB from inhibiting DNA gyrase and thereby averts cell death.

View Article and Find Full Text PDF

All proteins sample a range of conformations at physiologic temperatures and this inherent flexibility enables them to carry out their prescribed functions. A comprehensive understanding of protein function therefore entails a characterization of protein flexibility. Here we describe a novel approach for quantifying a protein's flexibility in solution using small-angle X-ray scattering (SAXS) data.

View Article and Find Full Text PDF

Unlabelled: Intrinsically disordered proteins (IDPs) play central roles in many biological processes. Consequently, an accurate description of the disordered state is an important step towards a comprehensive understanding of a number of important biological functions. In this work we describe a new web server, Mollack, for the automated construction of unfolded ensembles that uses both experimental and molecular simulation data to construct models for the unfolded state.

View Article and Find Full Text PDF

The traditional view of the structure-function paradigm is that a protein's function is inextricably linked to a well defined, three-dimensional structure, which is determined by the protein's primary amino acid sequence. However, it is now accepted that a number of proteins do not adopt a unique tertiary structure in solution and that some degree of disorder is required for many proteins to perform their prescribed functions. In this review, we highlight how a number of protein functions are facilitated by intrinsic disorder and introduce a new protein structure taxonomy that is based on quantifiable metrics of a protein's disorder.

View Article and Find Full Text PDF

Functioning proteins do not remain fixed in a unique structure, but instead they sample a range of conformations facilitated by motions within the protein. Even in the native state, a protein exists as a collection of interconverting conformations driven by thermodynamic fluctuations. Motions on the fast time scale allow a protein to sample conformations in the nearby area of its conformational landscape, while motions on slower time scales give it access to conformations in distal areas of the landscape.

View Article and Find Full Text PDF

Cryo-electron microscopy (cryo-EM) experiments yield low-resolution (3-30 Å) 3D-density maps of macromolecules. These density maps are segmented to identify structurally distinct proteins, protein domains, and subunits. Such partitioning aids the inference of protein motions and guides fitting of high-resolution atomistic structures.

View Article and Find Full Text PDF

The molten globule nuclear receptor co-activator binding domain (NCBD) of CREB binding protein (CBP) selectively recruits transcription co-activators (TCAs) during the formation of the transcription preinitiation complex. NCBD:TCA interactions have been implicated in several cancers, however, the mechanisms of NCBD:TCA recognition remain uncharacterized. NCBD:TCA intermolecular recognition has challenged traditional investigation as both NCBD and several of its corresponding TCAs are intrinsically disordered.

View Article and Find Full Text PDF

Motivation: Molecular dynamics (MD) simulations have dramatically improved the atomistic understanding of protein motions, energetics and function. These growing datasets have necessitated a corresponding emphasis on trajectory analysis methods for characterizing simulation data, particularly since functional protein motions and transitions are often rare and/or intricate events. Observing that such events give rise to long-tailed spatial distributions, we recently developed a higher-order statistics based dimensionality reduction method, called quasi-anharmonic analysis (QAA), for identifying biophysically-relevant reaction coordinates and substates within MD simulations.

View Article and Find Full Text PDF

We report the first experimental measurements of Ramachandran Ψ-angle distributions for intrinsically disordered peptides: the N-terminal peptide fragment of tumor suppressor p53 and its P27S mutant form. To provide atomically detailed views of the conformational distributions, we performed classical, explicit-solvent molecular dynamics simulations on the microsecond time scale. Upon binding its partner protein, MDM2, wild-type p53 peptide adopts an α-helical conformation.

View Article and Find Full Text PDF