Doping glass with semiconductors, particularly with nanostructured semiconductors, has attracted attention due to the large optical absorption cross-sections of the latter. Based on this property, Ni[Formula: see text] (5 wt%) doped phosphate glass and Zn[Formula: see text]Ni[Formula: see text]Te (x = 0.5, 1.
View Article and Find Full Text PDFIn this paper, thermally stable lead-bismuth-borate glasses were doped with 0.5 mol% of Pr ions at several concentration levels of Yb ions. Structural characterizations were performed via Raman, differential scanning calorimetry, optical absorption and fluorescence spectra.
View Article and Find Full Text PDFBioemulsifiers are surface active compounds which could be potentially used in food processing, cosmetic sector and oil recovery. Sugarcane straw (SS), was used as the raw substrate for the production of bio-emulsifiers (BE) by Cutaneotrichosporon mucoides. Three different delignification strategies using dilute sodium hydroxide, sodium sulfite and ammonium hydroxide followed by enzymatic hydrolysis (Cellic CTec 2, 7.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2019
Heat treatment of milk and dairy products are indispensable for the dairy industry. This thermal processing intends to extend shelf life, improve quality of the milk and minimize the health risks associated with milk and dairy products. The use of time-resolved fluorescence techniques to identify conformation and structure changes ok milk fat and proteins could help understand the temperature effects in bovine milk.
View Article and Find Full Text PDFIn this work, we assessed the use of confocal Raman microscopy and artificial neural network as a practical method to assess and quantify adulteration of fluid milk by addition of whey. Milk samples with added whey (from 0 to 100%) were prepared, simulating different levels of fraudulent adulteration. All analyses were carried out by direct inspection at the light microscope after depositing drops from each sample on a microscope slide and drying them at room temperature.
View Article and Find Full Text PDFBackground: Heavy usage of gasoline, burgeoning fuel prices, and environmental issues have paved the way for the exploration of cellulosic ethanol. Cellulosic ethanol production technologies are emerging and require continued technological advancements. One of the most challenging issues is the pretreatment of lignocellulosic biomass for the desired sugars yields after enzymatic hydrolysis.
View Article and Find Full Text PDFBackground: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol.
View Article and Find Full Text PDF