In this study, we investigate the transition between the Newtonian and the viscoelastic regimes during the pinch-off of droplets of dilute polymer solutions and discuss its link to the coil-stretch transition. The detachment of a drop from a nozzle is associated with the formation of a liquid neck that causes the divergence of the local stress in a vanishingly small region. If the liquid is a polymer solution, this increasing stress progressively unwinds the polymer chains, up to a point where the resulting increase in the viscosity slows down drastically the thinning.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2022
SignificanceThe pinch-off of a liquid drop extruded from a nozzle is a canonical situation that involves a series of self-similar regimes ending in a finite-time singularity. This configuration allows for exploring capillary flows over a large range of scales. In the case of suspension drops, the presence of particles breaks the self-similarity by introducing a length scale that can be much larger than the particle diameter.
View Article and Find Full Text PDFWhen a droplet is generated, the ligament connecting the drop to the nozzle thins down and eventually pinches off. Adding solid particles to the liquid phase leads to a more complex dynamic, notably by increasing the shear viscosity. Moreover, it introduces an additional length scale to the system, the diameter of the particles, which eventually becomes comparable to the diameter of the ligament.
View Article and Find Full Text PDF