We have explored the properties of SiC-based epitaxial graphene grown in a cold wall UHV chamber. The effects of the SiC surface orientation and silicon loss rate were investigated by comparing the characteristics of each formed graphene. Graphene was grown by thermal decomposition on both the silicon (0001) and carbon (000-1) faces of on-axis semi-insulating 6H-SiC with a "face-down" and "face-up" orientations.
View Article and Find Full Text PDFCovalent organic frameworks (COFs), in which molecular building blocks form robust microporous networks, are usually synthesized as insoluble and unprocessable powders. We have grown two-dimensional (2D) COF films on single-layer graphene (SLG) under operationally simple solvothermal conditions. The layered films stack normal to the SLG surface and show improved crystallinity compared with COF powders.
View Article and Find Full Text PDFEpitaxial, graphitic carbon thin films were directly grown on C-face/ (0001̄) SiC and (0001) sapphire by chemical vapor deposition (CVD), using propane as a carbon source and without any catalytic metal on the substrate surface. Raman spectroscopy shows the signature of multilayer graphene/graphite growth on both the SiC and sapphire. Raman 2D-peaks have Lorentzian lineshapes with FWHM of ~60 cm(-1) and the ratio of the D-peak to G-peak intensity (I(D)/I(G)) linearly decreases (down to 0.
View Article and Find Full Text PDF