Since the FDA's approval of chimeric antigen receptor (CAR) T cells in 2017, significant improvements have been made in the design of chimeric antigen receptor constructs and in the manufacturing of CAR T cell therapies resulting in increased CAR T cell persistence and improved clinical outcome in certain hematological malignancies. Despite the remarkable clinical response seen in some patients, challenges remain in achieving durable long-term tumor-free survival, reducing therapy associated malignancies and toxicities, and expanding on the types of cancers that can be treated with this therapeutic modality. Careful analysis of the biological factors demarcating efficacious from suboptimal CAR T cell responses will be of paramount importance to address these shortcomings.
View Article and Find Full Text PDFSummary: Molecular mechanisms of biological functions and disease processes are exceptionally complex, and our ability to interrogate and understand relationships is becoming increasingly dependent on the use of computational modeling. We have developed "BioModME," a standalone R-based web application package, providing an intuitive and comprehensive graphical user interface to help investigators build, solve, visualize, and analyze computational models of complex biological systems. Some important features of the application package include multi-region system modeling, custom reaction rate laws and equations, unit conversion, model parameter estimation utilizing experimental data, and import and export of model information in the Systems Biology Matkup Language format.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Immunotherapies have been proven to have significant therapeutic efficacy in the treatment of cancer. The last decade has seen adoptive cell therapies, such as chimeric antigen receptor T-cell (CART-cell) therapy, gain FDA approval against specific cancers. Additionally, there are numerous clinical trials ongoing investigating additional designs and targets.
View Article and Find Full Text PDFImmunotherapies have been proven to have significant therapeutic efficacy in the treatment of cancer. The last decade has seen adoptive cell therapies, such as chimeric antigen receptor T-cell (CART-cell) therapy, gain FDA approval against specific cancers. Additionally, there are numerous clinical trials ongoing investigating additional designs and targets.
View Article and Find Full Text PDF