Publications by authors named "Viraj Muthye"

The widely distributed MutS gene family functions in recombination, DNA repair, and protein translation. Multiple evolutionary processes have expanded this gene family in plants relative to other eukaryotes. Here, we investigate the origins and functions of these plant-specific genes.

View Article and Find Full Text PDF

Myxozoans are a monophyletic taxon of approximately 2,400 described species of parasites from the phylum Cnidaria. The recent focus on their negative impacts on fisheries, on their evolution from free-living ancestors, and on their emergence into new fish host populations has stressed the critical need for genomic resources for this parasitic group. Here, we describe the genome assembly and annotation of Myxobolus rasmusseni, an emerging parasite of fathead minnows in Alberta, Canada.

View Article and Find Full Text PDF

The gene family is distributed across the tree of life and is involved in recombination, DNA repair, and protein translation. Multiple evolutionary processes have expanded the set of genes in plants relative to other eukaryotes. Here, we investigate the origins and functions of these plant-specific genes.

View Article and Find Full Text PDF

Mitochondrial proteomes have been experimentally characterized for only a handful of animal species. However, the increasing availability of genomic and transcriptomic data allows one to infer mitochondrial proteins using computational tools. MitoPredictor is a novel random forest classifier, which utilizes orthology search, mitochondrial targeting signal (MTS) identification, and protein domain content to infer mitochondrial proteins in animals.

View Article and Find Full Text PDF
Article Synopsis
  • Pathogens use sophisticated strategies like molecular mimicry to manipulate host signaling pathways.
  • In this study, researchers developed a bioinformatics pipeline to identify molecular mimicry between human proteins and those of 32 pathogenic species, finding that fungi and protozoans had more mimicry candidates than bacteria.
  • The analysis uncovered 1,878 mimicked regions in 1,439 human proteins, highlighting their potential role in biological processes, particularly in extracellular matrix organization, while noting that immune-related proteins were less frequently targeted.
  • This research enhances our understanding of host-pathogen interactions and could aid in developing new therapeutic strategies.
View Article and Find Full Text PDF

All studied octocoral mitochondrial genomes (mt-genomes) contain a homologue of the Escherichia coli mutS gene, a member of a gene family encoding proteins involved in DNA mismatch repair, other types of DNA repair, meiotic recombination, and other functions. Although mutS homologues are found in all domains of life, as well as viruses, octocoral mt-mutS is the only such gene found in an organellar genome. While the function of mtMutS is not known, its domain architecture, conserved sequence, and presence of several characteristic residues suggest its involvement in mitochondrial DNA repair.

View Article and Find Full Text PDF

MutS is a key component of the mismatch repair (MMR) pathway. Members of the MutS protein family are present in prokaryotes, eukaryotes, and viruses. Six MutS homologs (MSH1-6) have been identified in yeast, of which three function in nuclear MMR, while MSH1 functions in mitochondrial DNA repair.

View Article and Find Full Text PDF

Multiple mRNA isoforms of the same gene are produced via alternative splicing, a biological mechanism that regulates protein diversity while maintaining genome size. Alternatively spliced mRNA isoforms of the same gene may sometimes have very similar sequence, but they can have significantly diverse effects on cellular function and regulation. The products of alternative splicing have important and diverse functional roles, such as response to environmental stress, regulation of gene expression, human heritable, and plant diseases.

View Article and Find Full Text PDF

Despite a conserved set of core mitochondrial functions, animal mitochondrial proteomes show a large variation in size. We analyzed putative mechanisms behind and functional significance of this variation by performing comparative analysis of the experimentally-verified mitochondrial proteomes of four bilaterian animals (human, mouse, Caenorhabditis elegans, and Drosophila melanogaster) and two non-animal outgroups (Acanthamoeba castellanii and Saccharomyces cerevisiae). We found that of several factors affecting mitochondrial proteome size, evolution of novel mitochondrial proteins in mammals and loss of ancestral proteins in protostomes were the main contributors.

View Article and Find Full Text PDF

Data on experimentally-characterized animal mitochondrial proteomes (mt-proteomes) are limited to a few model organisms and are scattered across multiple databases, impeding a comparative analysis. We developed two resources to address these problems. First, we re-analyzed proteomic data from six species with experimentally characterized mt-proteomes: animals (Homo sapiens, Mus musculus, Caenorhabditis elegans, and Drosophila melanogaster), and outgroups (Acanthamoeba castellanii and Saccharomyces cerevisiae) and created the Metazoan Mitochondrial Proteome Database (MMPdb) to host the results.

View Article and Find Full Text PDF

Mitochondria require ~1,500 proteins for their maintenance and proper functionality, which constitute the mitochondrial proteome (mt-proteome). Although a few of these proteins, mostly subunits of the electron transport chain complexes, are encoded in mitochondrial DNA (mtDNA), the vast majority are encoded in the nuclear genome and imported to the organelle. Previous studies have shown a continuous and complex evolution of mt-proteome among eukaryotes.

View Article and Find Full Text PDF

Legionella pneumophila, the agent of Legionnaires' disease pneumonia, is transmitted to humans following the inhalation of contaminated water droplets. In aquatic systems, L. pneumophila survives much of time within multi-organismal biofilms.

View Article and Find Full Text PDF