Despite their clinical significance, human platelets are not amenable to genetic manipulation, thus forcing a reliance on mouse models. Culture-derived platelets (CDPs) from human peripheral blood CD34(+) cells can be genetically altered and may eventually be used for transfusions. By use of microfluidics, the time-dependent incorporation of CD41(+)CD42(+) CDPs into clots was measured using only 54,000 CDPs doped into 27 μL of human whole blood perfused over collagen at a wall shear rate of 100 sec(-1).
View Article and Find Full Text PDFMicroRNAs (miRNAs) can control stem cell differentiation by targeting mRNAs. Using 96-well plate electroporation, we screened 466 human miRNA mimics by four-color flow cytometry to explore differentiation of common myeloid progenitors (CMP) derived from human embryonic stem cells (hESCs). The transfected cells were then cultured in a cytokine cocktail that supported multiple hematopoietic lineages.
View Article and Find Full Text PDFProtein Eng Des Sel
October 2012
Many biotechnology applications require the evolution of enhanced protein stability. Using polymerase chain reaction-based recovery of engineered clones during the screen enrichment phase, we describe a yeast display method capable of yielding engineered proteins having thermal stability that substantially exceeds the viability threshold of the yeast host. To this end, yeast-enhanced green fluorescent protein destabilized by dual-loop insertion was engineered to possess a substantially enhanced resistance to thermal denaturation at 70°C.
View Article and Find Full Text PDF