The first step in any dietary monitoring system is the automatic detection of eating episodes. To detect eating episodes, either sensor data or images can be used, and either method can result in false-positive detection. This study aims to reduce the number of false positives in the detection of eating episodes by a wearable sensor, Automatic Ingestion Monitor v2 (AIM-2).
View Article and Find Full Text PDFAutomatic food portion size estimation (FPSE) with minimal user burden is a challenging task. Most of the existing FPSE methods use fiducial markers and/or virtual models as dimensional references. An alternative approach is to estimate the dimensions of the eating containers prior to estimating the portion size.
View Article and Find Full Text PDFSensor-based food intake monitoring has become one of the fastest-growing fields in dietary assessment. Researchers are exploring imaging-sensor-based food detection, food recognition, and food portion size estimation. A major problem that is still being tackled in this field is the segmentation of regions of food when multiple food items are present, mainly when similar-looking foods (similar in color and/or texture) are present.
View Article and Find Full Text PDFImaging-based methods of food portion size estimation (FPSE) promise higher accuracies compared to traditional methods. Many FPSE methods require dimensional cues (fiducial markers, finger-references, object-references) in the scene of interest and/or manual human input (wireframes, virtual models). This paper proposes a novel passive, standalone, multispectral, motion-activated, structured light-supplemented, stereo camera for food intake monitoring (FOODCAM) and an associated methodology for FPSE that does not need a dimensional reference given a fixed setup.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Tracking an individual's food intake provides useful insight into their eating habits. Technological advancements in wearable sensors such as the automatic capture of food images from wearable cameras have made the tracking of food intake efficient and feasible. For accurate food intake monitoring, an automated food detection technique is needed to recognize foods from unstaged real-world images.
View Article and Find Full Text PDF