Publications by authors named "Vipra Dhir"

Influenza virus-like particles (VLPs) represent an attractive alternative to traditional influenza vaccine formulations. Influenza VLPs mimic the natural virus while lacking the genetic material, are easily recognized by the immune system, and are considered safe. The use of a mammalian cell platform offers many advantages for VLP production, such as flexibility and the same glycosylation patterns as a human virus.

View Article and Find Full Text PDF

Increasing research and development costs coupled with growing concerns over healthcare expenditures necessitate the generation of pre-clinical testing models better able to predict the efficacy of vaccines, drugs and biologics. An ideal system for evaluating vaccine immunogenicity will not only be reliable but also physiologically relevant, able to be influenced by immunomodulatory characteristics such as age or previous exposure to pathogens. We have previously described a fully autologous human cell-based MIMIC® (Modular IMmune In vitro Construct) platform which enables the evaluation of innate and adaptive immunity in vitro, including naïve and recall responses.

View Article and Find Full Text PDF

Neutralizing antibodies induced by vaccination or natural infection play a critically important role in protection against the viral diseases. In general, neutralization of the viral infection occurs via two major pathways: pre- and post-attachment modes, the first being the most important for such infections as influenza and polio, the latter being significant for filoviruses. Neutralizing capacity of antibodies is typically evaluated by virus neutralization assays that assess reduction of viral infectivity to the target cells in the presence of functional antibodies.

View Article and Find Full Text PDF

Human peripheral blood mononuclear cells (PBMC) are routinely used in vitro to detect cytokine secretion as part of preclinical screens to delineate agonistic and antagonistic action of therapeutic monoclonal antibodies (mAbs). Preclinical value of standard human PBMC assays to detect cytokine release syndrome (CRS) has been questioned, as they did not predict the "cytokine storm" that occurred when healthy human volunteers were given a CD28-specific super-agonist mAb, TGN1412. In this article, we describe a three-dimensional biomimetic vascular test-bed that can be used as a more physiologically relevant assay for testing therapeutic Abs.

View Article and Find Full Text PDF

Cardiac side effects are one of the major causes of drug candidate failures in preclinical drug development or in clinical trials and are responsible for the retraction of several already marketed therapeutics. Thus, the development of a relatively high-throughput, high information content tool to screen drugs and toxins would be important in the field of cardiac research and drug development. In this study, recordings from commercial multielectrode arrays were combined with surface patterning of cardiac myocyte monolayers to enhance the information content of the method; specifically, to enable the measurement of conduction velocity, refractory period after action potentials and to create a functional re-entry model.

View Article and Find Full Text PDF

While the duration and size of human clinical trials may be difficult to reduce, there are several parameters in pre-clinical vaccine development that may be possible to further optimise. By increasing the accuracy of the models used for pre-clinical vaccine testing, it should be possible to increase the probability that any particular vaccine candidate will be successful in human trials. In addition, an improved model will allow the collection of increasingly more-informative data in pre-clinical tests, thus aiding the rational design and formulation of candidates entered into clinical evaluation.

View Article and Find Full Text PDF

Integration of living cells with novel microdevices requires the development of innovative technologies for manipulating cells. Chemical surface patterning has been proven as an effective method to control the attachment and growth of diverse cell populations. Patterning polyelectrolyte multilayers through the combination of layer-by-layer self-assembly technique and photolithography offer a simple, versatile, and silicon compatible approach that overcomes chemical surface patterning limitations, such as short-term stability and low-protein adsorption resistance.

View Article and Find Full Text PDF