Publications by authors named "Viovy N"

Article Synopsis
  • During dry periods, decreasing soil moisture leads to plant water stress, highlighting the need for better quantification of a critical soil moisture threshold (θ) to improve climate and resource projections.* -
  • By combining satellite data and ground observations, researchers created a global map of θ, finding it averages at 0.19 m/m, with variations based on ecosystem types.* -
  • The study identified key factors influencing θ, such as aridity, leaf area, and soil texture, and noted an increase in the number of stressful days for plants over the last 40 years, which has implications for understanding water stress in ecosystems.*
View Article and Find Full Text PDF

Rain-fed pastoral systems are tightly connected to meteorological conditions. It is, therefore, likely that climate change, including changing atmospheric CO2 concentration, temperature, precipitation and patterns of climate extremes, will greatly affect pastoral systems. However, exact impacts on the productivity and carbon dynamics of these systems are still poorly understood, particularly over longtime scales.

View Article and Find Full Text PDF

Synthetic Nitrogen (N) usage in agriculture has greatly increased food supply over the past century. However, the intensive use of N fertilizer is nevertheless the source of numerous environmental issues and remains a major challenge for policymakers to understand, measure, and quantify the interactions and trade-offs between ecosystem carbon and terrestrial biodiversity loss. In this study, we investigate the impacts of a public policy scenario that aims to halve N fertilizer application across European Union (EU) agriculture on both carbon (C) sequestration and biodiversity changes.

View Article and Find Full Text PDF

During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO from 1901 to 2019.

View Article and Find Full Text PDF

Surface ozone (O) is a threat to forests by decreasing photosynthesis and, consequently, influencing the strength of land carbon sink. However, due to the lack of continuous surface O measurements, observational-based assessments of O impacts on forests are largely missing at hemispheric to global scales. Currently, some metrics are used for regulatory purposes by governments or national agencies to protect forests against the negative impacts of ozone: in particular, both Europe and United States (US) makes use of two different exposure-based metrics, i.

View Article and Find Full Text PDF

Recent studies suggest increasing sensitivity to orbital variations across the Eocene-Oligocene greenhouse to icehouse climate transition. However, climate simulations and paleoenvironmental studies mostly provide snapshots of the past climate, therefore overlooking the role of this short-term variability in driving major environmental changes and possibly biasing model-data comparisons. We address this problem by performing numerical simulations describing the end-members of eccentricity, obliquity, and precession.

View Article and Find Full Text PDF

Aerosols have a dimming and cooling effect and change hydrological regimes, thus affecting carbon fluxes, which are sensitive to climate. Aerosols also scatter sunlight, which increases the fraction of diffuse radiation, increasing photosynthesis. There remains no clear conclusion whether the impact of aerosols on land carbon fluxes is larger through diffuse radiation change than through changes in other climate variables.

View Article and Find Full Text PDF

Grasslands absorb and release carbon dioxide (CO), emit methane (CH) from grazing livestock, and emit nitrous oxide (NO) from soils. Little is known about how the fluxes of these three greenhouse gases, from managed and natural grasslands worldwide, have contributed to past climate change, or the roles of managed pastures versus natural grasslands. Here, global trends and regional patterns of the full greenhouse gas balance of grasslands are estimated for the period 1750 to 2012.

View Article and Find Full Text PDF

In Europe, three widespread extreme summer drought and heat (DH) events have occurred in 2003, 2010 and 2018. These events were comparable in magnitude but varied in their geographical distribution and biomes affected. In this study, we perform a comparative analysis of the impact of the DH events on ecosystem CO fluxes over Europe based on an ensemble of 11 dynamic global vegetation models (DGVMs), and the observation-based FLUXCOM product.

View Article and Find Full Text PDF

In summer 2018, central and northern Europe were stricken by extreme drought and heat (DH2018). The DH2018 differed from previous events in being preceded by extreme spring warming and brightening, but moderate rainfall deficits, yet registering the fastest transition between wet winter conditions and extreme summer drought. Using 11 vegetation models, we show that spring conditions promoted increased vegetation growth, which, in turn, contributed to fast soil moisture depletion, amplifying the summer drought.

View Article and Find Full Text PDF

Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model-data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed.

View Article and Find Full Text PDF

Satellite observations show that leaf area index (LAI) has increased globally since 1981, but the impact of this vegetation structural change on the global terrestrial carbon cycle has not been systematically evaluated. Through process-based diagnostic ecosystem modeling, we find that the increase in LAI alone was responsible for 12.4% of the accumulated terrestrial carbon sink (95 ± 5 Pg C) from 1981 to 2016, whereas other drivers of CO fertilization, nitrogen deposition, and climate change (temperature, radiation, and precipitation) contributed to 47.

View Article and Find Full Text PDF

Evaluating the response of the land carbon sink to the anomalies in temperature and drought imposed by El Niño events provides insights into the present-day carbon cycle and its climate-driven variability. It is also a necessary step to build confidence in terrestrial ecosystems models' response to the warming and drying stresses expected in the future over many continents, and particularly in the tropics. Here we present an in-depth analysis of the response of the terrestrial carbon cycle to the 2015/2016 El Niño that imposed extreme warming and dry conditions in the tropics and other sensitive regions.

View Article and Find Full Text PDF

Large herbivores are a major agent in ecosystems, influencing vegetation structure, and carbon and nutrient flows. During the last glacial period, a mammoth steppe ecosystem prevailed in the unglaciated northern lands, supporting a high diversity and density of megafaunal herbivores. The apparent discrepancy between abundant megafauna and the expected low vegetation productivity under a generally harsher climate with a lower CO concentration, termed the productivity paradox, requires large-scale quantitative analysis using process-based ecosystem models.

View Article and Find Full Text PDF

Background: Europe has warmed more than the global average (land and ocean) since pre-industrial times, and is also projected to continue to warm faster than the global average in the twenty-first century. According to the climate models ensemble projections for various climate scenarios, annual mean temperature of Europe for 2071-2100 is predicted to be 1-5.5 °C higher than that for 1971-2000.

View Article and Find Full Text PDF

Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO) originate primarily from fluctuations in carbon uptake by land ecosystems. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales. Here we use empirical models based on eddy covariance data and process-based models to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales.

View Article and Find Full Text PDF

Several lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE-GM a process-based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.

View Article and Find Full Text PDF

The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution of management practice; (2) management intensity, going from intensively to extensively managed; (3) gridded simulation of the carbon balance at ecosystem and farm scale; and (4) gridded simulation of N2 O and CH4 emissions by fertilized grassland soils and livestock. The external drivers of the model are changing animal numbers, nitrogen fertilization and deposition, land-use change, and variable CO2 and climate.

View Article and Find Full Text PDF

About 25% of European livestock intake is based on permanent and sown grasslands. To fulfill rising demand for animal products, an intensification of livestock production may lead to an increased consumption of crop and compound feeds. In order to preserve an economically and environmentally sustainable agriculture, a more forage based livestock alimentation may be an advantage.

View Article and Find Full Text PDF

The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions.

View Article and Find Full Text PDF

The effect of biodiversity on ecosystem functioning has been widely acknowledged, and the importance of the functional roles of species, as well as their diversity, in the control of ecosystem processes has been emphasised recently. However, bridging biodiversity and ecosystem science to address issues at a biogeographic scale is still in its infancy. Bridging this gap is the primary goal of the emerging field of functional biogeography.

View Article and Find Full Text PDF

Satellite-derived Normalized Difference Vegetation Index (NDVI), a proxy of vegetation productivity, is known to be correlated with temperature in northern ecosystems. This relationship, however, may change over time following alternations in other environmental factors. Here we show that above 30°N, the strength of the relationship between the interannual variability of growing season NDVI and temperature (partial correlation coefficient RNDVI-GT) declined substantially between 1982 and 2011.

View Article and Find Full Text PDF

The African humid tropical biome constitutes the second largest rainforest region, significantly impacts global carbon cycling and climate, and has undergone major changes in functioning owing to climate and land-use change over the past century. We assess changes and trends in COâ‚‚ fluxes from 1901 to 2010 using nine land surface models forced with common driving data, and depict the inter-model variability as the uncertainty in fluxes. The biome is estimated to be a natural (no disturbance) net carbon sink (-0.

View Article and Find Full Text PDF

The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11).

View Article and Find Full Text PDF

Model-based projections of shifts in tree species range due to climate change are becoming an important decision support tool for forest management. However, poorly evaluated sources of uncertainty require more scrutiny before relying heavily on models for decision-making. We evaluated uncertainty arising from differences in model formulations of tree response to climate change based on a rigorous intercomparison of projections of tree distributions in France.

View Article and Find Full Text PDF