Publications by authors named "Violette Sanchez"

is the most common bacterial sexually-transmitted pathogen for which there is no vaccine. We previously demonstrated that the degree of phosphate substitution in an aluminum hydroxide adjuvant in a TLR-4-based serovar E (Ser E) recombinant major outer membrane protein (rMOMP) formulation had an impact on the induced antibody titers and IFN-γ levels. Here, we have extended these observations using outbreed CD-1 mice immunized with Ser E rMOMP formulations to evaluate the impact on bacterial challenge.

View Article and Find Full Text PDF

Wall teichoic acid (WTA) are major constituents of Staphylococcus aureus (S. aureus) cell envelopes with important roles in the bacteria's physiology, resistance to antimicrobial molecules, host interaction, virulence and biofilm formation. They consist of ribitol phosphate repeat units in which the ribitol residue is substituted with D-alanine (D-Ala) and N-acetyl-D-glucosamine (GlcNAc).

View Article and Find Full Text PDF

Chlamydia trachomatis is one of the most common sexually transmitted pathogens and the development of an effective vaccine is highly desirable. The Major Outer Membrane Protein (MOMP) is one of the most abundant and immunogenic chlamydial proteins. Here we investigated the effects of phosphate substitution on the physicochemical and immunochemical properties of an experimental vaccine composed of serovar E recombinant MOMP (rMOMP) and a proprietary adjuvant system SPA08, consisting of aluminum oxyhydroxide (AlOOH) containing the TLR4 agonist E6020.

View Article and Find Full Text PDF

Infectious murine models greatly benefit from optical imaging using bioluminescent bacteria to non-invasively and repeatedly follow in vivo bacterial infection. In this context, one of the most critical parameters is the bioluminescence sensitivity to reliably detect the smallest number of bacteria. Another critical point is the anesthetic approaches that have been demonstrated to impact the bioluminescence flux emission in studies with luciferase-transfected tumor cells.

View Article and Find Full Text PDF

Background: The neotropical, non-human primates (NHP) of the genus Saimiri and Aotus are recommended by the World Health Organization as experimental models for the study of human malaria because these animals can be infected with the same Plasmodium that cause malaria in humans. However, one limitation is the lack of immunological tools to assess the immune response in these models. The present study focuses on the development and comparative use of molecular and immunological methods to evaluate the cellular immune response in Saimiri sciureus.

View Article and Find Full Text PDF
Article Synopsis
  • Three clinical trials in Australia and the USA tested a dengue vaccine's safety and how well it works in the body.
  • The vaccine created strong immune responses without causing lots of inflammation, and a second dose improved the immune reactions even more.
  • These trials showed the vaccine was safe and effective for both people who had never been exposed to dengue and those who had, with consistent results across all tests.
View Article and Find Full Text PDF

Dengue infection is an important public health issue worldwide. The ChimeriVax-Dengue (CYD) vaccine uses yellow fever (YF) 17D vaccine as a live vector. Dendritic cells (DCs) play a key role in initiating immune responses and could be an important primary target of dengue infection.

View Article and Find Full Text PDF

VDV3, a clonal derivative of the Mahidol live-attenuated dengue 3 vaccine was prepared in Vero cells. Despite satisfactory preclinical evaluation, VDV3 was reactogenic in humans. We explored whether immunological mechanisms contributed to this outcome by monitoring innate and adaptive cellular immune responses for 28 days after vaccination.

View Article and Find Full Text PDF

Dengue is an important threat for world-wide public health. Different vaccines are under development, which are currently assessed using a battery of in vitro and in vivo assays before moving on to humans. It is also important to assess vaccine characteristics on human primary cells; among them, dendritic cells, the most efficient antigen-presenting cells, are the first targets of dengue virus infection.

View Article and Find Full Text PDF

The reasons why some proteins induce a particular type of T helper (Th) response are of fundamental importance but only partially understood. In the present study, amphipatic sequence motifs were identified in N- and C-terminal domains of Helicobacter pylori (Hp) catalase, which are linked to the induction of Th1 or Th2 immune responses, respectively. Alignment of these motifs with other proteins known to induce either Th1 or Th2 responses has lead to the identification of Th1 and Th2 consensus motifs, termed modulotopes.

View Article and Find Full Text PDF

In order to study the respective roles of CD4, CD8, and CD56 (NK) cells in gamma interferon (IFN-gamma) production after in vitro stimulation with flu vaccine in a healthy adult human population, we depleted these cellular subtypes before stimulation with antigen (inactivated split vaccine, A/Texas H1N1, or A/Sydney H3N2). We observed that while CD4 cells were required for IFN-gamma secretion in both conditions in vitro, CD56 (NK) cells and, to a lesser extent, CD8 cells had a negative effect on such synthesis upon H1N1 stimulation, as judged by an increased number of spots compared to the initial undepleted population. This regulation of IFN-gamma secretion was associated with an increase in ICAM-1 expression, in particular on T and B cells.

View Article and Find Full Text PDF