The circadian clock orchestrates many physiological and behavioural rhythms in mammals with 24-h periodicity, through a hierarchical organisation, with the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus. The circuits of the SCN generate circadian rhythms with precision, relying on intrinsic coupling mechanisms, for example, neurotransmitters like arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), neuronal gamma-aminobutyric acid (GABA) signalling and astrocytes connected by gap junctions composed of connexins (Cx). In female rodents, the presence of estrogen receptors (ERs) in the dorsal SCN suggests an influence of estrogen (E2) on the circuit timekeeping that could regulate circadian rhythm and coupling.
View Article and Find Full Text PDFMost lifeforms on earth use endogenous, so-called circadian clocks to adapt to 24-h cycles in environmental demands driven by the planet's rotation around its axis. Interactions with the environment change over the course of a lifetime, and so does regulation of the circadian clock system. In this review, we summarize how circadian clocks develop in humans and experimental rodents during embryonic development, how they mature after birth and what changes occur during puberty, adolescence and with increasing age.
View Article and Find Full Text PDFIn mammals, molecular circadian clocks not only exist in the suprachiasmatic nucleus (SCN) but in almost all organ systems. Intriguingly, tissue clocks can operate in both isolated tissues and cell lines with endocrine signals mediating the circadian expression of local transcriptomes. This can be demonstrated by treating tissue explants with endocrine cues in a phase- and dose-dependent manner.
View Article and Find Full Text PDFBariatric surgery is still the most effective long-term weight-loss therapy. Recent data indicate that surgical outcomes may be affected by diurnal food intake patterns. In this study, we aimed to investigate how surgery-induced metabolic adaptations (i.
View Article and Find Full Text PDFA gradual adaptation to a shifted light-dark (LD) cycle is a key element of the circadian clock system and believed to be controlled by the central circadian pacemaker, the (SCN). Endocrine factors have a strong influence on the regulation of the circadian clock network and alter acute photic responses of the SCN clock. In females, endocrine function depends on the stage of the ovarian cycle.
View Article and Find Full Text PDFThe circadian clock network regulates daily rhythms in mammalian physiology and behavior to optimally adapt the organism to the 24-h day/night cycle. A central pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), coordinates subordinate cellular oscillators in the brain, as well as in peripheral organs to align with each other and external time. Stability and coordination of this vast network of cellular oscillators is achieved through different levels of coupling.
View Article and Find Full Text PDFLife on earth is shaped by the 24-h rotation of our planet around its axes. To adapt behavior and physiology to the concurring profound but highly predictable changes, endogenous circadian clocks have evolved that drive 24-h rhythms in invertebrate and vertebrate species. At the molecular level, circadian clocks comprised a set of clock genes organized in a system of interlocked transcriptional-translational feedback loops.
View Article and Find Full Text PDFTranscriptional-translational feedback loops (TTFLs) are a conserved molecular motif of circadian clocks. The principal clock in mammals is the suprachiasmatic nucleus (SCN) of the hypothalamus. In SCN neurons, auto-regulatory feedback on core clock genes Period (Per) and Cryptochrome (Cry) following nuclear entry of their protein products is the basis of circadian oscillation [1, 2].
View Article and Find Full Text PDFLight plays a critical role in the regulation of numerous aspects of physiology and behaviour, including the entrainment of circadian rhythms and the regulation of sleep. These responses involve melanopsin (OPN4)-expressing photosensitive retinal ganglion cells (pRGCs) in addition to rods and cones. Nocturnal light exposure in rodents has been shown to result in rapid sleep induction, in which melanopsin plays a key role.
View Article and Find Full Text PDFMelanopsin (OPN4) is a retinal photopigment that mediates a wide range of non-image-forming (NIF) responses to light including circadian entrainment, sleep induction, the pupillary light response (PLR), and negative masking of locomotor behavior (the acute suppression of activity in response to light). How these diverse NIF responses can all be mediated by a single photopigment has remained a mystery. We reasoned that the alternative splicing of melanopsin could provide the basis for functionally distinct photopigments arising from a single gene.
View Article and Find Full Text PDFThe mammalian circadian system synchronizes daily timing of activity and rest with the environmental light-dark cycle. Although the underlying molecular oscillatory mechanism is well studied, factors that influence phenotypic plasticity in daily activity patterns (temporal niche switching, chronotype) are presently unknown. Molecular evidence suggests that metabolism may influence the circadian molecular clock, but evidence at the level of the organism is lacking.
View Article and Find Full Text PDFMany aspects of mammalian physiology are driven through the coordinated action of internal circadian clocks. Clock speed (period) and phase (temporal alignment) are fundamental to an organism's ability to synchronize with its environment. In humans, lifestyles that disturb these clocks, such as shift work, increase the incidence of diseases such as cancer and diabetes.
View Article and Find Full Text PDFNocturnal rodents show diurnal food anticipatory activity when food access is restricted to a few hours in daytime. Timed food access also results in reduced food intake, but the role of food intake in circadian organization per se has not been described. By simulating natural food shortage in mice that work for food we show that reduced food intake alone shifts the activity phase from the night into the day and eventually causes nocturnal torpor (natural hypothermia).
View Article and Find Full Text PDFIn mammals, numerous physiological and behavioural functions are controlled by an endogenous circadian clock located in the suprachiasmatic nuclei (SCN). Within the SCN neurons, clock genes such as Per1 and Per2 interact in a molecular clockwork regulating the expression of hundreds of output genes. Through the timed release of humoral and neuronal signals, the rhythmicity of numerous biological processes, including reproductive behaviour, the oestrus cycle and endocrine parameters is controlled by the SCN.
View Article and Find Full Text PDFThe specific immune system is a protective mechanism that detects infection and fights it by production of antibodies. Newborns are especially susceptible to infections because their immune system is not yet as fully developed as that of adults. This has been well established in altricial mammals.
View Article and Find Full Text PDF