Publications by authors named "Violetta Krisilia"

Multidrug-resistant pathogens pose a major threat to human health, necessitating the identification of new drug targets and lead compounds that are not susceptible to cross-resistance. This study demonstrates that novel reverse thia analogs of the phosphonohydroxamic acid antibiotic fosmidomycin inhibit 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), an essential enzyme for , , and that is absent in humans. Some novel analogs with large α-phenyl substituents exhibited strong inhibition across these three DXR orthologues, surpassing the inhibitory activity of fosmidomycin.

View Article and Find Full Text PDF
Article Synopsis
  • The growing issue of antimicrobial resistance highlights the urgent need for new treatments against Mycobacterium tuberculosis (Mtb), leading researchers to explore callyaerins, a class of unique hydrophobic cyclopeptides, as potential anti-tubercular agents.
  • Callyaerins are effective against various strains of Mtb, including those resistant to existing antibiotics, showing minimal harm to human cells and strong intracellular activity.
  • Studies reveal that callyaerins target a specific membrane protein in Mtb, Rv2113, causing significant disturbances in vital cellular processes like lipid synthesis and DNA repair, indicating that even non-essential proteins could be promising targets for new antimycobacterial drugs.
View Article and Find Full Text PDF

About 100,000 deaths are attributed annually to infections with methicillin-resistant (MRSA) despite concerted efforts toward vaccine development and clinical trials involving several preclinically efficacious drug candidates. This necessitates the development of alternative therapeutic options against this drug-resistant bacterial pathogen. Using the Masuda borylation-Suzuki coupling (MBSC) sequence, we previously synthesized and modified naturally occurring bisindole alkaloids, alocasin A, hyrtinadine A and scalaradine A, resulting in derivatives showing potent and antibacterial efficacy.

View Article and Find Full Text PDF

Antimicrobial resistance is a global health threat that requires the development of new treatment concepts. These should not only overcome existing resistance but be designed to slow down the emergence of new resistance mechanisms. Targeted protein degradation, whereby a drug redirects cellular proteolytic machinery towards degrading a specific target, is an emerging concept in drug discovery.

View Article and Find Full Text PDF