Background: Short-bowel syndrome is the leading cause of pediatric intestinal failure, resulting in dependency on long-term parenteral nutrition (PN). To promote enteral autonomy in neonates, a key outcome may be intestinal growth in length. The purpose of this study was to determine if intestinal lengthening persists following discontinuation of treatment with 1 of 2 GLP-2 analogues with different pharmacokinetic profiles.
View Article and Find Full Text PDFBackground: In treating short-bowel syndrome (SBS), autonomy from parenteral nutrition (PN) relies upon intestinal adaptation, which can be augmented by glucagon-like peptide-2 (GLP-2) analogues. In neonatal piglets with SBS, we compared intestinal adaptation following treatment with 2 GLP-2 analogues: teduglutide (TED) and apraglutide (APRA) METHODS: Following 75% distal small-intestinal resection, piglets were allocated to 4 treatment groups: saline (CON: n = 8), twice weekly APRA (5 mg/kg/dose; n = 8), and TED once daily (TED, 0.05 mg/kg/dose; n = 8) or twice daily (TEDBID, 0.
View Article and Find Full Text PDFGlucagon-like peptide-2 (GLP-2) agonists have therapeutic potential in clinical indications in which the integrity or absorptive function of the intestinal mucosa is compromised, such as in short bowel syndrome (SBS). Native hGLP-2, a 33-amino acid peptide secreted from the small intestine, contributes to nutritional absorption but has a very short half-life because of enzymatic cleavage and renal clearance and thus is of limited therapeutic value. The GLP-2 analog teduglutide (Revestive/Gattex; Shire Inc.
View Article and Find Full Text PDFBoth the antiangiogenic and antitumoral activity of shark cartilage extracts (SCE) have been demonstrated in animal models and clinical trials. Studies reported that SCE induces the expression of tissue plasminogen activator gene (PLAT) in endothelial cells and increases the activity of the protein (t-PA) in vitro. The aim of this study was to demonstrate the crucial role of t-PA induction in the antiangiogenic and antitumor activity of SCE in experimental glioma.
View Article and Find Full Text PDFA novel naturally occurring antiangiogenic agent isolated from cartilage, referred to as Neovastat (AE-941), was examined for its efficacy against tumor neovascularization and progression. Exposure to Neovastat results in ex ovo antiangiogenic properties in the chorioallantoid membrane of chicken embryo (71% decrease in the angiogenic index as compared to the basic fibroblast growth factor (bFGF) treated control embryos, P < 0.0001).
View Article and Find Full Text PDFPurpose: Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, which exerts direct effects on vascular endothelial cells, including endothelial cell proliferation and survival, tubulogenesis, and vascular permeability. In this study, we examined whether Neovastat, a naturally occurring multifunctional antiangiogenic drug, could inhibit the endothelial cell response to VEGF stimulation.
Results: We demonstrated that Neovastat was able to block the VEGF-dependent microvessel sprouting from Matrigel-embedded rat aortic rings, and it also blocked the VEGF-induced endothelial cell tubulogenesis in vitro.