The recombinant structural protein described in this study was designed based on sequences derived from elastin and silk. Silk-elastin hybrid copolymers are characterized by high solubility while maintaining high product flexibility. The phase transition temperature from aqueous solution to hydrogel, as well as other physicochemical and mechanical properties of such particles, can differ significantly depending on the number of sequence repeats.
View Article and Find Full Text PDFIn this study we propose to use for bioprinting a bioink enriched with a recombinant RE15mR protein with a molecular weight of 26 kDa, containing functional sequences derived from resilin and elastin. The resulting protein also contains RGD sequences in its structure, as well as a metalloproteinase cleavage site, allowing positive interaction with the cells seeded on the construct and remodeling the structure of this protein in situ. The described protein is produced in a prokaryotic expression system using an bacterial strain and purified by a process using a unique combination of known methods not previously used for recombinant elastin-like proteins.
View Article and Find Full Text PDFAvian influenza viruses (AIVs) and especially highly pathogenic (HP) AIVs of the H5 and H7 subtypes are of both veterinary and public health concern worldwide. In response to the demand for effective vaccines against H5N1 HPAIVs, we produced recombinant protein based on hemagglutinin (HA), a protective viral antigen. A fragment of the HA ectodomain, with a multibasic cleavage site deletion, was expressed in Escherichia coli, refolded, and chromatographically purified from inclusion bodies.
View Article and Find Full Text PDFBackground: H5-subtype highly pathogenic (HP) avian influenza viruses (AIVs) cause high mortality in domestic birds and sporadic infections in humans with a frequently fatal outcome, while H5N1 viruses have pandemic potential. Due to veterinary and public health significance, these HPAIVs, as well as low pathogenicity (LP) H5-subtype AIVs having a propensity to mutate into HP viruses, are under epidemiologic surveillance and must be reported to the World Organization for Animal Health (OIE). Our previous work provided a unique panel of 6 different monoclonal antibodies (mAbs) against H5 hemagglutinin (HA), which meets the demand for high-specificity tools for monitoring AIV infection and vaccination in poultry.
View Article and Find Full Text PDFChemical modification of known, effective drugs is one method to improve chemotherapy. Thus, the object of this study was to generate melphalan derivatives with improved cytotoxic activity in human cancer cells (RPMI8226, HL60 and THP1). Several melphalan derivatives were synthesised, modified in their two important functional groups.
View Article and Find Full Text PDFSingle-chain variable fragment (scFv) antibodies are fusion proteins of the variable regions of the heavy and light chains of immunoglobulins connected with a short linker peptide. They possess unique and superior features compared to whole antibodies for immunotherapy of various carcinomas, including hematologic B-cell malignancies. In the presented study we obtained efficient production of the recombinant anti-CD22 scFv in Escherichia coli expression system.
View Article and Find Full Text PDFFront Immunol
October 2020
The highly pathogenic (HP) avian influenza virus (AIV), H5N1 and reassortant H5-subtype HPAIVs, H5N2, H5N6, and H5N8, cause high mortality in domestic birds, resulting in economic losses in the poultry industry. H5N1 and H5N6 also pose significant public health risks and H5N1 viruses are a permanent pandemic threat. To control HPAIVs, eukaryotic expression systems have traditionally been exploited to produce vaccines based on hemagglutinin (HA), a protective viral antigen.
View Article and Find Full Text PDFBackground: The highly pathogenic avian influenza viruses of the H5 subtype, such as the H5N1 viral strains or the novel H5N8 and H5N2 reassortants, are of both veterinary and public health concern worldwide. To combat these viruses, monoclonal antibodies (mAbs) against H5 hemagglutinin (HA) play a significant role. These mAbs are effective diagnostic and therapeutic agents and powerful tools in vaccine development and basic scientific research.
View Article and Find Full Text PDFPLoS One
April 2017
PLoS One
August 2017
The highly pathogenic (HP) H5N1 avian influenza viruses (AIVs) cause a mortality rate of up to 100% in infected chickens and pose a permanent pandemic threat. Attempts to obtain effective vaccines against H5N1 HPAIVs have focused on hemagglutinin (HA), an immunodominant viral antigen capable of eliciting neutralizing antibodies. The vast majority of vaccine projects have been performed using eukaryotic expression systems.
View Article and Find Full Text PDFThis work shows the usefulness of chicken oviduct epithelial cells (COEC) in evaluating the efficacy of non-viral expression vectors carrying human therapeutic genes. Secondly, an efficient source of progenitor COEC for in vitro studies is described. Within the distal part of the oviduct, weak to moderate expression of a trans membrane glycoprotein (CD44) was observed.
View Article and Find Full Text PDFThe availability of catalytically active peptidylglycine α-amidating monooxygenase (PAM) should provide the means to examine its potential use for the chemienzymatic synthesis of bioactive peptides for the purpose of pharmacological studies. Hypoglycemic activity is one of the most important features of insulin derivatives. Insulin glargine amide was found to show a time/effect profile which is distinctly more flat and thus more advantageous than insulin glargine itself.
View Article and Find Full Text PDFThe A/swan/Poland/305-135V08/2006 (H5N1-subtype) hemagglutinin (HA) gene was cloned and expressed in yeast Pichia pastoris (P. pastoris). The HA cDNA lacking the C-terminal transmembrane anchor-coding sequence was fused to an α-factor leader peptide and placed under control of the methanol-inducible P.
View Article and Find Full Text PDF