Publications by authors named "Violeta N Peeva"

An in silico redesign of the secondary quinone electron acceptor (Q) binding pocket of the D1 protein of Photosystem II (PSII) suggested that mutations of the F265 residue would affect atrazine binding. Chlamydomonas reinhardtii mutants F265T and F265S were produced to obtain atrazine-hypersensitive strains for biosensor applications, and the mutants were indeed found to be more atrazine-sensitive than the reference strain IL. Fluorescence and thermoluminescence data agree with a weak driving force and confirm slow electron transfer but cannot exclude an additional effect on protonation of the secondary quinone.

View Article and Find Full Text PDF

Cyclic electron flow around photosystem I drives additional proton pumping into the thylakoid lumen, which enhances the protective non-photochemical quenching and increases ATP synthesis. It involves several pathways activated independently. In whole barley leaves, P700 oxidation under far-red illumination and subsequent P700(+) dark reduction kinetics provide a major probe of the activation of cyclic pathways.

View Article and Find Full Text PDF