The urinary bladder mucosa (urothelium and suburothelium/lamina propria) functions as a barrier between the content of the urine and the underlying bladder tissue. The bladder mucosa is also a mechanosensitive tissue that releases signaling molecules that affect functions of cells in the bladder wall interconnecting the mucosa with the detrusor muscle and the CNS. Adenosine 5'-triphosphate (ATP) is a primary mechanotransduction signal that is released from cells in the bladder mucosa in response to bladder wall distention and activates cell membrane-localized P2X and P2Y purine receptors on urothelial cells, sensory and efferent neurons, interstitial cells, and detrusor smooth muscle cells.
View Article and Find Full Text PDFPurinergic signaling is important for normal bladder function, as it is thought to initiate the voiding reflex and modulate smooth muscle tone. The availability of adenine nucleotides and nucleosides (aka purines) at receptor sites of various cell types in the bladder wall is regulated by ectonucleotidases (ENTDs). ENTDs hydrolyze purines such as adenosine 5'-triphosphate (ATP) and adenosine 5'-diphosphate (ADP) with varying preference for the individual substrate.
View Article and Find Full Text PDFBladder urothelium and suburothelium/lamina propria (LP) have prominent sensory and transducer functions with the active participation of afferent neurons and urothelium-derived purine mediators such as adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine (ADO). Effective concentrations of purines at receptor targets depend significantly on the extracellular degradation of ATP by ectonucleotidases (ENTDs). We recently reported the regulated release of soluble ENTDs (s-ENTDs) in the LP and the consequent degradation of ATP to ADP, AMP, and ADO.
View Article and Find Full Text PDFThe bladder urothelium releases ATP into the lamina propria (LP) during filling, which can activate P2X receptors on afferent neurons and trigger the micturition reflex. Effective ATP concentrations are largely dependent on metabolism by membrane-bound and soluble ectonucleotidases (s-ENTDs), and the latter are released in the LP in a mechanosensitive manner. Pannexin 1 (PANX1) channel and P2X7 receptor (P2X7R) participate in urothelial ATP release and are physically and functionally coupled, hence we investigated whether they modulate s-ENTDs release.
View Article and Find Full Text PDFThe urinary bladder requires adequate concentrations of extracellular adenosine 5'-triphosphate (ATP) and other purines at receptor sites to function properly. Sequential dephosphorylation of ATP to ADP, AMP and adenosine (ADO) by membrane-bound and soluble ectonucleotidases (s-ENTDs) is essential for achieving suitable extracellular levels of purine mediators. S-ENTDs, in particular, are released in the bladder suburothelium/lamina propria (LP) in a mechanosensitive manner.
View Article and Find Full Text PDFAdenosine 5′-triphosphate (ATP) is released in the bladder lumen during filling. Urothelial ATP is presumed to regulate bladder excitability. Urinary ATP is suggested as a urinary biomarker of bladder dysfunctions since ATP is increased in the urine of patients with overactive bladder, interstitial cystitis or bladder pain syndrome.
View Article and Find Full Text PDFPrior studies suggest that urothelium-released adenosine 5'-triphosphate (ATP) has a prominent role in bladder mechanotransduction. Urothelial ATP regulates the micturition cycle through activation of purinergic receptors that are expressed in many cell types in the lamina propria (LP), including afferent neurons, and might also be important for direct mechanosensitive signaling between urothelium and detrusor. The excitatory action of ATP is terminated by enzymatic hydrolysis, which subsequently produces bioactive metabolites.
View Article and Find Full Text PDFClassical concepts of peripheral neurotransmission were insufficient to explain enteric inhibitory neurotransmission. Geoffrey Burnstock and colleagues developed the idea that ATP or a related purine satisfies the criteria for a neurotransmitter and serves as an enteric inhibitory neurotransmitter in GI muscles. Cloning of purinergic receptors and development of specific drugs and transgenic mice have shown that enteric inhibitory responses depend upon P2Y receptors in post-junctional cells.
View Article and Find Full Text PDFKey Points: β-Nicotinamide adenine dinucleotide (β-NAD) is a key inhibitory neurotransmitter in the colon. The neuroeffector junction in the gut consists of enteric motor neurons and SIP syncytium, including smooth muscle cells (SMCs), interstitial cells of Cajal (ICC), and cells expressing platelet-derived growth factor receptor α (PDGFRα cells). Measuring metabolism of 1,N -etheno-NAD (eNAD) in colonic tunica muscularis and in SMCs, ICC and PDGFRα cells with HPLC-FLD, we report that (1) in tissues, eNAD is degraded to eADP-ribose, eAMP and e-adenosine (eADO) by CD38, ENPP1 and NT5E, (2) with SMCs and PDGFRα cells, eNAD is metabolized to eADO by ENPP1 and NT5E, (3) eNAD is not metabolized by ICC, (4) NT5E is expressed chiefly by SMCs and moderately by PDGFRα cells, (5) SIP cells are not the primary location of CD38.
View Article and Find Full Text PDFPrevious studies have established the release of chemical substances from flat bladder mucosa sheets affixed in Ussing chambers and exposed to changes in hydrostatic pressure or mechanical stretch and from cultured urothelial cells upon hydrostatic pressure changes, stretch, cell swelling, or drag forces, and in bladder lumen at end of filling. Such findings led to the assumption that these mediators are also released in suburothelium (SubU)/lamina propria (LP) during bladder filling, where they affect cells deep in the bladder wall to ultimately regulate bladder excitability. There are at least two obvious limitations in such studies: 1) none of these approaches provide direct information about the presence of mediators in SubU/LP, and 2) the stimuli used are not physiological and do not recapitulate authentic filling of the bladder.
View Article and Find Full Text PDFKey Points: Studies of urothelial cells, bladder sheets or lumens of filled bladders have suggested that mediators released from urothelium into suburothelium (SubU)/lamina propria (LP) activate mechanisms controlling detrusor excitability. None of these approaches, however, has enabled direct assessment of availability of mediators at SubU/LP during filling. We developed an ex vivo mouse bladder preparation with intact urothelium and SubU/LP but no detrusor, which allows direct access to the SubU/LP surface of urothelium during filling.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
November 2017
Regulation of colonic motility depends on the integrity of enteric inhibitory neurotransmission mediated by nitric oxide (NO), purine neurotransmitters, and neuropeptides. Intramuscular interstitial cells of Cajal (ICC-IM) and platelet-derived growth factor receptor-α-positive (PDGFRα) cells are involved in generating responses to NO and purine neurotransmitters, respectively. Previous studies have suggested a decreased nitrergic and increased purinergic neurotransmission in ( ) mice that display lesions in ICC-IM along the gastrointestinal tract.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
October 2016
During urinary bladder filling the bladder urothelium releases chemical mediators that in turn transmit information to the nervous and muscular systems to regulate sensory sensation and detrusor muscle activity. Defects in release of urothelial mediators may cause bladder dysfunctions that are characterized with aberrant bladder sensation during bladder filling. Previous studies have demonstrated release of ATP from the bladder urothelium during bladder filling, and ATP remains the most studied purine mediator that is released from the urothelium.
View Article and Find Full Text PDFEnteric purinergic motor neurotransmission, acting through P2Y1 receptors (P2Y1R), mediates inhibitory neural control of the intestines. Recent studies have shown that NAD(+) and ADP ribose better meet criteria for enteric inhibitory neurotransmitters in colon than ATP or ADP. Here we report that human and murine colon muscles also release uridine adenosine tetraphosphate (Up4A) spontaneously and upon stimulation of enteric neurons.
View Article and Find Full Text PDFEnteric inhibitory neurotransmission is an important feature of the neural regulation of gastrointestinal motility. Purinergic neurotransmission, via P2Y1 receptors, mediates one phase of inhibitory neural control. For decades, ATP has been assumed to be the purinergic neurotransmitter and smooth muscle cells (SMCs) have been considered the primary targets for inhibitory neurotransmission.
View Article and Find Full Text PDFThe past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial.
View Article and Find Full Text PDFColitis, induced by trinitrobenzene sulfonic acid (TNBS) in guinea pig, leads to decreased purinergic neuromuscular transmission resulting in a reduction in inhibitory junction potentials (IJPs) in colonic circular muscle. We explored possible mechanisms responsible for this inflammation-induced neurotransmitter plasticity. Previous studies have suggested that the deficit in inflamed tissue involves decreased ATP release.
View Article and Find Full Text PDFAdenosine 5'-triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD(+) ) are key intracellular constituents involved in energy transfer and redox homeostasis in the cell. ATP is also released in the extracellular space and in the past half century it has been assumed to be the purinergic neurotransmitter in many systems including smooth muscle. In some smooth muscles (i.
View Article and Find Full Text PDFActivation of enteric inhibitory motor neurons causes inhibitory junctional potentials (IJPs) and muscle relaxation in mammalian gastrointestinal (GI) muscles, including humans. IJPs in many GI muscles are bi-phasic with a fast initial hyperpolarization (fIJP) due to release of a purine neurotransmitter and a slower hyperpolarization component (sIJP) due to release of nitric oxide. We sought to characterize the nature of the post-junctional receptor(s) involved in transducing purinergic neural inputs in the murine colon using mice with genetically deactivated P2ry1.
View Article and Find Full Text PDFAdenosine 5′-triphosphate (ATP) has long been considered to be the purine inhibitory neurotransmitter in gastrointestinal (GI) muscles, but recent studies indicate that another purine nucleotide, β-nicotinamide adenine dinucleotide (β-NAD(+)), meets pre- and postsynaptic criteria for a neurotransmitter better than ATP in primate and murine colons. Using a small-volume superfusion assay and HPLC with fluorescence detection and intracellular microelectrode techniques we compared β-NAD(+) and ATP metabolism and postjunctional effects of the primary extracellular metabolites of β-NAD(+) and ATP, namely ADP-ribose (ADPR) and ADP in colonic muscles from cynomolgus monkeys and wild-type (CD38(+/+)) and CD38(−/−) mice. ADPR and ADP caused membrane hyperpolarization that, like nerve-evoked inhibitory junctional potentials (IJPs), were inhibited by apamin.
View Article and Find Full Text PDFRecent evidence supports an emerging role of β-nicotinamide adenine dinucleotide (β-NAD(+) ) as a novel neurotransmitter and neuromodulator in the peripheral nervous system -β-NAD(+) is released in nerve-smooth muscle preparations and adrenal chromaffin cells in a manner characteristic of a neurotransmitter. It is currently unclear whether this holds true for the CNS. Using a small-chamber superfusion assay and high-sensitivity high-pressure liquid chromatography techniques, we demonstrate that high-K(+) stimulation of rat forebrain synaptosomes evokes overflow of β-NAD(+) , adenosine 5'-triphosphate, and their metabolites adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate, adenosine, ADP-ribose (ADPR) and cyclic ADPR.
View Article and Find Full Text PDFIt is well established that the intracellular second messenger cADP-ribose (cADPR) activates Ca(2+) release from the sarcoplasmic reticulum through ryanodine receptors. CD38 is a multifunctional enzyme involved in the formation of cADPR in mammals. CD38 has also been reported to transport cADPR in several cell lines.
View Article and Find Full Text PDFBackground & Aims: An important component of enteric inhibitory neurotransmission is mediated by a purine neurotransmitter, such as adenosine 5'-triphosphate (ATP), binding to P2Y1 receptors and activating small conductance K(+) channels. In murine colon β-nicotinamide adenine dinucleotide (β-NAD) is released with ATP and mimics the pharmacology of inhibitory neurotransmission better than ATP. Here β-NAD and ATP were compared as possible inhibitory neurotransmitters in human and monkey colons.
View Article and Find Full Text PDFIn nerve-smooth muscle preparations beta-nicotinamide adenine dinucleotide (beta-NAD) has emerged as a novel extracellular substance with putative neurotransmitter and neuromodulator functions. beta-NAD is released, along with noradrenaline and adenosine 5'-triphosphate (ATP), upon firing of action potentials in blood vessels, urinary bladder and large intestine. At present it is unclear whether noradrenaline, ATP and beta-NAD are stored in and released from common populations of synaptic vesicles.
View Article and Find Full Text PDF