Migratoriness in birds is evolutionary labile, with many examples of increasing or decreasing migration distances on the timescale of modern ornithology. In contrast, shifts of migration to more nearby wintering grounds seem to be a slow process. We examine the history of how Palearctic migratory landbirds have expanded their wintering ranges to include both tropical Africa and Asia, a process that has involved major shifts in migratory routes.
View Article and Find Full Text PDFIt is a long-standing view that the main mechanism maintaining narrow migratory divides in passerines is the selection against intermediate and suboptimal migratory direction, but empirical proof of this is still lacking. We present novel results from a willow warbler migratory divide in central Sweden from where birds take the typical SW and SE as well as intermediate routes to winter quarters in Africa. We hypothesized that individuals that take the intermediate route are forced to migrate in daytime more often when crossing wide ecological barriers than birds that follow the typical western or eastern flyways.
View Article and Find Full Text PDFMigratory routes and remote wintering quarters in birds are often species and even population specific. It has been known for decades that songbirds mainly migrate solitarily, and that the migration direction is genetically controlled. Yet, the underlying genetic mechanisms remain unknown.
View Article and Find Full Text PDFThe genetic basis of bird migration has been the focus of several studies. Two willow warbler subspecies (Phylloscopus trochilus trochilus and Phylloscopus trochilus acredula) follow different migratory routes to wintering grounds in Africa. Their breeding populations overlap in contact areas or "migratory divides" located in central Scandinavia and in eastern Poland.
View Article and Find Full Text PDF