Background: Metabolic plasticity mediates breast cancer survival, growth, and immune evasion during metastasis. However, how tumor cell metabolism is influenced by and feeds back to regulate breast cancer progression are not fully understood. We identify hypoxia-mediated suppression of pyruvate carboxylase (PC), and subsequent induction of lactate production, as a metabolic regulator of immunosuppression.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) lacks targeted therapies, leaving cytotoxic chemotherapy as the current standard treatment. However, chemotherapy resistance remains a major clinical challenge. Increased insulin-like growth factor 1 signaling can potently blunt chemotherapy response, and lysosomal processes including the nutrient scavenging pathway autophagy can enable cancer cells to evade chemotherapy-mediated cell death.
View Article and Find Full Text PDFWe report for the first time an anticancer benefit of tirzepatide-a dual glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide receptor agonist-in a model of obesity and breast cancer in female mice. Long-term tirzepatide treatment induced weight loss, mitigated obesity-driven changes in circulating metabolic hormone levels, and suppressed orthotopic E0771 mammary tumor growth. Relative to tirzepatide, chronic calorie restriction, an established anticancer intervention in preclinical models, promoted even greater weight loss, systemic hormonal regulation, and tumor suppression.
View Article and Find Full Text PDFIntermittent fasting entails restricting food intake during specific times of day, days of the week, religious practice, or surrounding clinically important events. Herein, the metabolic and circadian rhythm mechanisms underlying the proposed benefits of intermittent fasting for the cancer population are described. We summarize epidemiological, preclinical, and clinical studies in cancer published between January 2020 and August 2022 and propose avenues for future research.
View Article and Find Full Text PDFAn emerging hallmark of cancer is cellular metabolic reprogramming to adapt to varying cellular environments. Throughout the process of metastasis cancer cells gain anchorage independence which confers survival characteristics when detached from the extracellular matrix (ECM). Previous work demonstrates that the bioactive metabolite of vitamin D, 1α,25-dihydroxyvitamin D (1,25[OH]D), suppresses cancer progression, potentially by suppressing the ability of cells to metabolically adapt to varying cellular environments such as ECM detachment.
View Article and Find Full Text PDFRegions of hypoxia are common in solid tumors and drive changes in gene expression that increase risk of cancer metastasis. Tumor cells must respond to the stress of hypoxia by activating genes to modify cell metabolism and antioxidant response to improve survival. The goal of the current study was to determine the effect of hypoxia on cell metabolism and markers of oxidative stress in metastatic (metM-Wnt) compared with nonmetastatic (M-Wnt) murine mammary cancer cell lines.
View Article and Find Full Text PDFSeveral cancers, including breast cancers, show dependence on glutamine metabolism. The purpose of the present study was to determine the mechanistic basis and impact of differential glutamine metabolism in nonmetastatic and metastatic murine mammary cancer cells. Universally labeled C-glutamine metabolic tracing, qRT-PCR, measures of reductive-oxidative balance, and exogenous ammonium chloride treatment were used to assess glutamine reprogramming.
View Article and Find Full Text PDFNotch signaling is often aberrantly activated in solid and hematological cancers and regulates cell fate decisions and the maintenance of cancer stem cells. In addition, increased expression of Notch pathway components is clinically associated with poorer prognosis in several types of cancer. Targeting Notch may have chemopreventive and anti-cancer effects, leading to reduced disease incidence and improved survival.
View Article and Find Full Text PDFPyruvate carboxylase (PC) is a mitochondrial enzyme that catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate (OAA), serving to replenish the tricarboxylic acid (TCA) cycle. In nonmalignant tissue, PC plays an essential role in controlling whole-body energetics through regulation of gluconeogenesis in the liver, synthesis of fatty acids in adipocytes, and insulin secretion in pancreatic β cells. In breast cancer, PC activity is linked to pulmonary metastasis, potentially by providing the ability to utilize glucose, fatty acids, and glutamine metabolism as needed under varying conditions as cells metastasize.
View Article and Find Full Text PDFVitamin D exerts anti-cancer effects in recent clinical trials and preclinical models. The actions of vitamin D are primarily mediated through its hormonal form, 1,25-dihydroxyvitamin D (1,25(OH) D). Previous literature describing in vitro studies has predominantly focused on the anti-tumourigenic effects of the hormone, such as proliferation and apoptosis.
View Article and Find Full Text PDFspecies are important denizens of the human gut microbiome that ferment complex polysaccharides to butyrate as a terminal fermentation product, which influences human physiology and serves as an energy source for colonocytes. Previous comparative genomics analyses of the genus have examined polysaccharide degradation genes. Here, we characterize the core and pangenomes of the genus with respect to central carbon and energy metabolism, as well as biosynthesis of amino acids and B vitamins using orthology-based methods, uncovering significant differences among species in their biosynthetic capacities.
View Article and Find Full Text PDFTeam-based active learning has been associated with enhanced communication and critical thinking skills, and improved clinical competency in other allied-health disciplines, but little is known about this pedagogical technique in nutrition. This study compared content retention and perceptions of a team-based, active learning course redesign intervention in an undergraduate nutrition class pre- ( = 32) and post- ( = 43) intervention. Assessment scores improved overall (69% to 75%; < 0.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2017
Breast cancer affects one in eight women throughout the course of their lifetime creating a demand for novel prevention strategies against this disease. The Notch signaling pathway is often aberrantly activated in human malignancies including breast cancer. Alpha secretases, including ADAM (A Disintegrin and Metalloprotease) -10 and -17, are proteases that play a key role in the cleavage of cell surface molecules and subsequent ligand-mediated activation of Notch signaling pathway.
View Article and Find Full Text PDF