Publications by authors named "Violaine Llaurens"

Divergent evolution of genomes among closely related species is shaped by both neutral processes and ecological forces, such as local adaptation and reinforcement. These factors can drive accelerated evolution of sex chromosomes relative to autosomes. Comparative genomic analyses between allopatric and sympatric species with overlapping or divergent ecological niches offer insights into reinforcement and ecological specialization on genome evolution.

View Article and Find Full Text PDF

Mate preferences may target traits (a) enhancing offspring adaptation and (b) reducing heterospecific matings. Because similar selective pressures are acting on traits shared by different sympatric species, preference-enhancing offspring adaptation may increase heterospecific mating, in sharp contrast with the classical case of so-called "magic traits." Using a mathematical model, we study which and how many traits will be used during mate choice, when preferences for locally adapted traits increase heterospecific mating.

View Article and Find Full Text PDF

A genetic duplication event during evolution allowed male wood tiger moths to have either yellow or white patterns on their wings.

View Article and Find Full Text PDF

Ecological interactions can promote phenotypic diversification in sympatric species. While competition can enhance trait divergence, other ecological interactions may promote convergence in sympatric species. Within butterflies, evolutionary convergences in wing color patterns have been reported between distantly related species, especially in females of palatable species, where mimetic color patterns are promoted by predator communities shared with defended species living in sympatry.

View Article and Find Full Text PDF

The genomic processes enabling speciation and species coexistence in sympatry are still largely unknown. Here we describe the whole-genome sequencing and assembly of 3 closely related species from the butterfly genus Morpho: Morpho achilles (Linnaeus, 1758), Morpho helenor (Cramer, 1776), and Morpho deidamia (Höbner, 1819). These large blue butterflies are emblematic species of the Amazonian rainforest.

View Article and Find Full Text PDF

AbstractMutualistic interactions between defended species represent a striking case of evolutionary convergence in sympatry, driven by the increased protection against predators brought by mimicry in warning traits. However, such convergence is often limited: sympatric defended species frequently display different or imperfectly similar warning traits. The phylogenetic distance between sympatric species may indeed prevent evolution toward the exact same signal.

View Article and Find Full Text PDF

Morphological correlations can not only stem from developmental constraints but also from selective pressures. Butterfly eyespots are repeated wing color pattern elements, widespread across species. As developmental serial homologs, they are controlled by similar developmental pathways imposing correlations among eyespots: selection on a single eyespot may induce correlated responses in all eyespots.

View Article and Find Full Text PDF

Loci under balancing selection, where multiple alleles are maintained, offer a relevant opportunity to investigate the role of natural selection in shaping genetic dominance: the high frequency of heterozygotes at these loci has been shown to enable the evolution of dominance among alleles. In the butterfly Heliconius numata, mimetic wing color variations are controlled by an inversion polymorphism of a circa 2 Mb genomic region (supergene P), with strong dominance between sympatric alleles. To test how differences in dominance observed on wing patterns correlate with variations in expression levels throughout the supergene region, we sequenced the complete transcriptome of heterozygotes at the prepupal stage and compared it to corresponding homozygotes.

View Article and Find Full Text PDF

The emergence and persistence of polymorphism within populations generally requires specific regimes of natural or sexual selection. Here, we develop a unified theoretical framework to explore how polymorphism at targeted loci can be generated and maintained by either disassortative mating choice or balancing selection due to, for example, heterozygote advantage. To this aim, we model the dynamics of alleles at a single locus A in a population of haploid individuals, where reproductive success depends on the combination of alleles carried by the parents at locus A.

View Article and Find Full Text PDF

The striking female-limited mimicry observed in some butterfly species is a text-book example of sexually dimorphic trait submitted to intense natural selection. Two main evolutionary hypotheses, based on natural and sexual selection respectively, have been proposed. Predation pressure favoring mimicry toward defended species could be higher in females because of their slower flight, and thus overcome developmental constraints favoring the ancestral trait that limits the evolution of mimicry in males but not in females.

View Article and Find Full Text PDF

Habitat specialization can influence the evolution of animal movement in promoting divergent locomotor abilities adapted to contrasting environmental conditions, differences in vegetation clutter or predatory communities. While the effect of habitat on the evolution of locomotion and particularly escape performance has been well investigated in terrestrial animals, it remains understudied in flying animals. Here, we investigated whether specialization of Morpho butterfly species into different vertical strata of the Amazonian forest affects the performance of upward escape flight manoeuvres.

View Article and Find Full Text PDF

Predation is a powerful selective force shaping many behavioural and morphological traits in prey species. The deflection of predator attacks from vital parts of the prey usually involves the coordinated evolution of prey body shape and colour. Here, we test the deflection effect of hindwing (HW) tails in the swallowtail butterfly .

View Article and Find Full Text PDF

The coexistence of closely-related species in sympatry is puzzling because ecological niche proximity imposes strong competition and reproductive interference. A striking example is the widespread wing pattern convergence of several blue-banded Morpho butterfly species with overlapping ranges of distribution. Here we perform a series of field experiments using flying Morpho dummies placed in a natural habitat.

View Article and Find Full Text PDF

The diversity of flying animals suggests that countless combinations of flight morphologies and behaviors have evolved with specific lifestyles, thereby exploiting diverse aerodynamic mechanisms. How morphology, flight behavior, and aerodynamic properties together diversify with contrasting ecology remains to be elucidated. We studied the adaptive codivergence in wing shape, flight behavior, and aerodynamic efficiency among butterflies living in different forest strata by combining high-speed videography in the field with morphometric analyses and aerodynamic modeling.

View Article and Find Full Text PDF

AbstractDisassortative mating is a rare form of mate preference that promotes the persistence of polymorphism. While the evolution of assortative mating and its consequences for trait variation and speciation have been extensively studied, the conditions enabling the evolution of disassortative mating are still poorly understood. Mate preferences increase the risk of missing mating opportunities, a cost that can be compensated by a greater fitness of offspring.

View Article and Find Full Text PDF

Cognitive abilities enabling animals that feed on ephemeral but yearly renewable resources to infer resources are available may have been favoured by natural selection, but the magnitude of the benefits brought by these abilities remains poorly known. Using computer simulations, we compared the efficiencies of three main types of foragers with different abilities to process temporal information, in spatially and/or temporally homogeneous or heterogeneous environments. One was endowed with a memory, which stores recent experience about the availability of the different food types.

View Article and Find Full Text PDF

Dominance is a basic property of inheritance systems describing the link between a diploid genotype at a single locus and the resulting phenotype. Models for the evolution of dominance have long been framed as an opposition between the irreconcilable views of Fisher in 1928 supporting the role of largely elusive dominance modifiers and Wright in 1929, who viewed dominance as an emerging property of the structure of enzymatic pathways. Recent theoretical and empirical advances however suggest that these opposing views can be reconciled, notably using models investigating the regulation of gene expression and developmental processes.

View Article and Find Full Text PDF

Chemical defences in animals are both incredibly widespread and highly diverse. Yet despite the important role they play in mediating interactions between predators and prey, extensive differences in the amounts and types of chemical compounds can exist between individuals, even within species and populations. Here we investigate the potential role of environment and development on the chemical defences of warningly coloured butterfly species from the tribe Heliconiini, which can both synthesize and sequester cyanogenic glycosides (CGs).

View Article and Find Full Text PDF

Chromosomal inversions are ubiquitous in genomes and often coordinate complex phenotypes, such as the covariation of behavior and morphology in many birds, fishes, insects or mammals. However, why and how inversions become associated with polymorphic traits remains obscure. Here we show that despite a strong selective advantage when they form, inversions accumulate recessive deleterious mutations that generate frequency-dependent selection and promote their maintenance at intermediate frequency.

View Article and Find Full Text PDF

The evolution of mate choice is a major topic in evolutionary biology because it is thought to be a key factor in trait and species diversification. Here, we aim at uncovering the ecological conditions and genetic architecture enabling the puzzling evolution of disassortative mating based on adaptive traits. This rare form of mate choice is observed for some polymorphic traits but theoretical predictions on the emergence and persistence of this behavior are largely lacking.

View Article and Find Full Text PDF

Species interactions such as mimicry can promote trait convergence but disentangling this effect from those of shared ecology, evolutionary history, and niche conservatism is often challenging. Here by focusing on wing colour pattern variation within and between three butterfly species living in sympatry in a large proportion of their range, we tested the effect of species interactions on trait diversification. These butterflies display a conspicuous iridescent blue coloration on the dorsal side of their wings and a cryptic brownish colour on the ventral side.

View Article and Find Full Text PDF

Self-incompatibility (SI) is a self-recognition genetic system enforcing outcrossing in hermaphroditic flowering plants and results in one of the arguably best understood forms of natural (balancing) selection maintaining genetic variation over long evolutionary times. A rich theoretical and empirical population genetics literature has considerably clarified how the distribution of SI phenotypes translates into fitness differences among individuals by a combination of inbreeding avoidance and rare-allele advantage. At the same time, the molecular mechanisms by which self-pollen is specifically recognized and rejected have been described in exquisite details in several model organisms, such that the genotype-to-phenotype map is also pretty well understood, notably in the Brassicaceae.

View Article and Find Full Text PDF

Evolutionary convergence of color pattern in mimetic species is tightly linked with the evolution of chemical defenses. Yet, the evolutionary forces involved in natural variations of chemical defenses in aposematic species are still understudied. Herein, we focus on the evolution of chemical defenses in the butterfly tribe Heliconiini.

View Article and Find Full Text PDF

The persistence of distinct warning signals within and between sympatric mimetic communities is a puzzling evolutionary question because selection favours convergence of colour patterns among toxic species. Such convergence is partly shaped by predators' reaction to similar but not identical stimulus (i.e.

View Article and Find Full Text PDF