While mining provides valuable metals and minerals to meet societal demands, it can cause environmental contamination from the residuals (i.e., tailings) of mining.
View Article and Find Full Text PDFWe report 12 metagenome-assembled genomes (MAGS) of a bioreactor community of acid-tolerant nitrifying bacteria. The MAGS include autotrophs in the genus and heterotrophs in the Xanthomonadales, Ktedonobacterales, Cytophagales, Burkholderiales, and Hyphomicrobiales. These taxonomic and genomic data provide insights into the core community members required for nitrification at low pH.
View Article and Find Full Text PDFAgrosyst Geosci Environ
September 2023
To provide recommendations for establishment of plants on low-pH Formosa Mine tailings, two greenhouse experiments were conducted to evaluate the use of remedial amendments to improve the survival and growth of Douglas fir () seedlings. A preliminary experiment indicated that 1% lime (by weight) raised tailings pH, permitting seedling survival. However, high rates of biosolid application (BS; 2% by weight) added to supply nutrients were phytotoxic when added with lime.
View Article and Find Full Text PDF4-Formylaminooxyvinylglycine (FVG) is an herbicidal and antibacterial nonproteinogenic amino acid produced by several strains of the species complex. It contains a unique vinyl alkoxyamine moiety with an O-N bond, and its biosynthetic origin remains unknown. Here, we show that the cluster from WH6 is responsible for the biosynthesis of FVG and two additional O-N bond-containing oxyvinylglycines, guanidinooxyvinylglycine and aminooxyvinylglycine.
View Article and Find Full Text PDFAbandoned mine lands present persistent environmental challenges to ecosystems and economies; reclamation an important step for overcoming these challenges. Phytostabilization is an elegant and cost-effective reclamation strategy, however, establishing plants on severely degraded soils is problematic, often requiring soil amendment additions. We evaluated whether amendment mixtures composed of lime, biochar, biosolids, and locally effective microbes (LEM) could alleviate the constraints that hinder phytostabilization success.
View Article and Find Full Text PDFThe biological herbicide and antibiotic 4-formylaminooxyvinylglycine (FVG) was originally isolated from several rhizosphere-associated strains of Pseudomonas fluorescens. Biosynthesis of FVG is dependent on the gvg biosynthetic gene cluster in P. fluorescens.
View Article and Find Full Text PDFWH6 produces the non-proteinogenic amino acid 4-formylaminooxyvinylglycine (FVG), a secondary metabolite with antibacterial and pre-emergent herbicidal activities. The operon necessary for FVG production encodes eight required genes: one regulatory (), two of unknown functional potential ( and ), three with putative biosynthetic function (, , and ), and two small ORFs ( and ). To gain insight into the role of GvgA and C in FVG production, we compared the transcriptome of knockout (KO) mutants of , , and to wild type (WT) to test two hypotheses: (1) GvgA and GvgC play a regulatory role in FVG production and (2) non- cluster genes are regulated by GvgA and GvgC.
View Article and Find Full Text PDFis the causal agent of fire blight of apple and pear trees. Several bacteria have been shown to produce antibiotics that antagonize , including pantocins, herbicolins, dapdiamides, and the vinylglycines, 4-formylaminooxyvinylglycine (FVG) and 4-aminoethoxyvinylglycine (AVG). BRT175 was previously shown to exhibit antibiotic activity against via the production of natural product 1 (PNP-1), later shown to be FVG; however, exposure of to FVG results in spontaneously resistant mutants.
View Article and Find Full Text PDFThe oxyvinylglycine 4-formylaminooxyvinylglycine (FVG) arrests the germination of weedy grasses and inhibits the growth of the bacterial plant pathogen Erwinia amylovora. Both biological and analytical methods have previously been used to detect the presence of FVG in crude and extracted culture filtrates of several Pseudomonas fluorescens strains. Although a combination of these techniques is adequate to detect FVG, none is amenable to high-throughput analysis.
View Article and Find Full Text PDFVinylglycines are nonproteinogenic amino acids that inhibit amino acid metabolism and ethylene production. Here, we report the draft genome sequences of seven isolates of that produce 4-formylaminooxyvinylglycine, a compound known to inhibit the germination of grasses and the growth of specific plant-pathogenic bacteria.
View Article and Find Full Text PDFRhizosphere-associated Pseudomonas fluorescens WH6 produces the germination-arrest factor 4-formylaminooxyvinylglycine (FVG). FVG has previously been shown to both arrest the germination of weedy grasses and inhibit the growth of the bacterial plant pathogen Erwinia amylovora. Very little is known about the mechanism by which FVG is produced.
View Article and Find Full Text PDFMol Plant Microbe Interact
October 2015
The necrotrophic fungus Pyrenophora tritici-repentis is responsible for the disease tan spot of wheat. Ptr ToxB (ToxB), a proteinaceous host-selective toxin, is one of the effectors secreted by P. tritici-repentis.
View Article and Find Full Text PDFPyrenophora tritici-repentis, the causal agent of tan spot disease of wheat, mediates disease by the production of host-selective toxins (HST). The known toxins are recognized in an 'inverse' gene-for-gene manner, where each is perceived by the product of a unique locus in the host and recognition leads to disease susceptibility. Given the importance of HSTs in disease development, we would predict that the loss of any of these major pathogenicity factors would result in reduced virulence and disease development.
View Article and Find Full Text PDFPyrenophora tritici-repentis Ptr ToxB (ToxB) is a proteinaceous host-selective toxin produced by Pyrenophora tritici-repentis (P. tritici-repentis), a plant pathogenic fungus that causes the disease tan spot of wheat. One feature that distinguishes ToxB from other host-selective toxins is that it has naturally occurring homologs in non-pathogenic P.
View Article and Find Full Text PDFThe genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species.
View Article and Find Full Text PDFPyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P.
View Article and Find Full Text PDFPyrenophora tritici-repentis (Ptr), a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs) necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA) and Ptr ToxB (ToxB), are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility.
View Article and Find Full Text PDFHost-selective toxins (HSTs) are effectors produced by some necrotrophic pathogenic fungi that typically confer the ability to cause disease. Often, diseases caused by pathogens that produce HSTs follow an inverse gene-for-gene model where toxin production is required for the ability to cause disease and a single locus in the host is responsible for toxin sensitivity and disease susceptibility. Pyrenophora tritici-repentis represents an ideal pathogen for studying the biological significance of such inverse gene-for-gene interactions, because it displays a complex race structure based on its production of multiple HSTs.
View Article and Find Full Text PDF*ToxA, a host-selective toxin of wheat, can be detected within ToxA-sensitive mesophyll cells, where it localizes to chloroplasts and induces necrosis. Interaction of ToxA with the chloroplast-localized protein ToxABP1 has been implicated in this process. Therefore, we hypothesized that silencing of ToxABP1 in wheat would lead to a necrotic phenotype.
View Article and Find Full Text PDFTo obtain greater insight into the molecular events underlying plant disease susceptibility, we studied transcriptome changes induced by a host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA (ToxA), on its host plant, wheat. Transcriptional profiling of ToxA-treated leaves of a ToxA-sensitive wheat cultivar was performed using the GeneChip Wheat Genome Array. An improved and up-to-date annotation of the wheat microarray was generated and a new tool for array data analysis (BRAT) was developed, and both are available for public use via a web-based interface.
View Article and Find Full Text PDFPtr ToxA (ToxA) is a proteinaceous necrotizing host-selective toxin produced by Pyrenophora tritici-repentis, a fungal pathogen of wheat (Triticum aestivum). In this study, we have found that treatment of ToxA-sensitive wheat leaves with ToxA leads to a light-dependent accumulation of reactive oxygen species (ROS) that correlates with the onset of necrosis. Furthermore, the accumulation of ROS and necrosis could be inhibited by the antioxidant N-acetyl cysteine, providing further evidence that ROS production is required for necrosis.
View Article and Find Full Text PDFMol Plant Microbe Interact
March 2008
Internalization of the proteinaceous host-selective toxin, Ptr ToxA (ToxA), into sensitive wheat mesophyll cells is correlated with toxin activity. The solvent-exposed, Arg-Gly-Asp (RGD)-containing loop of ToxA is a candidate for interaction with the plasma membrane, which is a likely prerequisite to toxin internalization. Based on the percentage of cells affected by a given number of ToxA molecules in a treatment zone, the number of ToxA molecules bound to high-affinity sites was estimated at 3 x 10(6) per cell and the Kd for binding was estimated to be near 1 nM.
View Article and Find Full Text PDFPyrenophora tritici-repentis, causal agent of tan spot of wheat, produces host-selective toxins that are determinants of pathogenicity or virulence. Ptr ToxA (ToxA), a proteinaceous toxin produced by P. tritici-repentis, is a necrotizing toxin produced by the most common races isolated from infected wheat.
View Article and Find Full Text PDFTan spot of wheat (Triticum aestivum), caused by the fungus Pyrenophora tritici-repentis, has significant agricultural and economic impact. Ptr ToxA (ToxA), the first discovered proteinaceous host-selective toxin, is produced by certain P. tritici-repentis races and is necessary and sufficient to cause cell death in sensitive wheat cultivars.
View Article and Find Full Text PDFThe plant pathogenic fungus Pyrenophora tritici-repentis secretes host-selective toxins (HSTs) that function as pathogenicity factors. Unlike most HSTs that are products of enzymatic pathways, at least two toxins produced by P. tritici-repentis are proteins and, thus, products of single genes.
View Article and Find Full Text PDF