The current investigation focuses on the copyrolysis of L. (a nonedible oilseed, also known as Nahar) and polyethyelene terephthalate (PET) plastic waste to gain insights into the composition of pyrolysates and the thermal decomposition of complex and mixed feedstocks. The physicochemical properties of the feedstocks were studied through thermogravimetric analysis at a heating rate of 15 °C min, bomb calorimetry, and proximate/ultimate analysis.
View Article and Find Full Text PDFUnlabelled: Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging.
View Article and Find Full Text PDFIn order to obtain extended storage life of food-grade materials and better barrier properties against environmental factors, a multilayer plastic packaging (MLP) is often used. The multilayer packaging plastics are labelled as "other" (SPI#7) category, and are manufactured with a combination of barrier plastics, rigid plastics and printing surface. Owing to their complex composition and difficulty in separating the layers of MLP, its mechanical recycling is challenging.
View Article and Find Full Text PDFJ Anal Appl Pyrolysis
March 2023
During the COVID-19 pandemic, the world saw an exponential surge in the production of Personal Protective Equipment (PPE) kits, which eventually got discarded in the biomedical waste stream. In this study, thirteen different polymer samples from the PPE kit were collected and characterized using Fourier transform infrared spectrometer, thermogravimetric analysis, and analytical pyrolysis-gas chromatograph/mass spectrometry. The characterization data showed that about 94 % by mass of components were made of only three polymers, viz.
View Article and Find Full Text PDFPrinted circuit boards (PCBs) constitute an important segment of electronic waste that can be effectively utilized to recover valuable metals and organics. The present work is focused on the kinetics and product distribution from pyrolysis of three different PCB samples, viz., television PCB (TV PCB), motherboard PCB (MB PCB), and hard disk PCB (HD PCB).
View Article and Find Full Text PDFRefuse-derived fuels (RDF) are rich in resources that make them an attractive feedstock for the production of energy and biofuels. Hydrothermal liquefaction (HTL) is a promising thermochemical conversion technology to handle wet feedstocks and convert them to valuable bio-crude, bio-char and aqueous products. This study highlights the advantages of using glycerol as the co-solvent along with water in different proportions to produce bio-crude from RDF via HTL.
View Article and Find Full Text PDFThe need for fresh water limits the application and scale-up of hydrothermal technologies to convert waste biomass to energy and chemicals. In an effort to demonstrate the use of wastewater for sustainable process development, this work is focused on hydrothermal liquefaction (HTL) (350 °C, 18 MPa, 30 min) and carbonization (HTC) (200 °C, 7 MPa, 4 h) of rice straw with water from various sources (milli-Q water, tap water, seawater, recycled wastewater and industrial wastewater). The bio-crude yield from HTL was maximum (36.
View Article and Find Full Text PDFThe present study on one non-edible oilseed (Mesua ferrea L) employs the pyrolysis process to understand the pyrolysate composition and the thermal degradation behavior of biomass. The physicochemical characterization of whole seed was investigated using thermogravimetric analysis at different heating rates (5, 10, 20, and 40 °C min), bomb calorimeter, proximate/ultimate analysis. FTIR analysis confirmed the presence of the lignocellulosic compounds.
View Article and Find Full Text PDFThe present investigation employed transposon technology to enhance the degradation of recalcitrant petroleum hydrocarbons present in petroleum oil sludge by using biosurfactant hyper-producing strain Enterobacter xiangfangensis STP-3. Out of 2500 transposon induced mutants, mutants M and M hyper-produce biocatalytic lipoprotein biosurfactant by1.98 and 2.
View Article and Find Full Text PDFHydrothermal liquefaction of red macroalgae species, Kappaphycus alvarezii (KA) and Eucheuma denticulatum (ED), was performed at 350 °C in the presence of 5 wt% neutral and alkali catalysts like NaCO, KCO, CaCO, NaSO, NaOH, and KOH. The maximum bio-crude yield of 26.7 wt% and 18.
View Article and Find Full Text PDFThis article presents experimental data on the techniques used for the characterization of Pd-AlO supported on activated biochar (2Pd-5Al/ABC) catalyst. The reported data is collected as a part of the research on the 2Pd-5Al/ABC catalyst used for lignin hydrogenolysis [1]. The data on X-ray powder diffraction, ammonia-temperature programmed desorption, pyridine diffuse reflectance infrared Fourier transform spectroscopy, and high-resolution scanning electron microscopy of various catalysts are valuable to study the changes in surface morphology and acidity upon metal loading.
View Article and Find Full Text PDFAqueous phase (AP) recirculation is a promising process intensification strategy to improve the yield and quality of the products and cost efficiency of the hydrothermal liquefaction (HTL) process by replacing the fresh water used in the experiments. The results demonstrate that AP recirculation in the HTL of rice straw decreases the bio-crude yield from 32.6 wt% to 9.
View Article and Find Full Text PDFThe conversion of biomass-derived lignin to valuable monomeric phenols at high selectivity is of paramount importance for sustainable biorefineries. In this study, a novel Pd-AlO supported on activated biochar catalyst is developed for lignin hydrogenolysis. The catalyst characterization revealed that the (111) planes of both of Pd and AlO were exposed to the surface.
View Article and Find Full Text PDFThis study is focused on the valorization of heterogeneous municipal solid waste collected from the landfill using hydrothermal liquefaction process using glycerol as a co-solvent. The effects of temperature (300-350 °C) and residence time (15-45 min) on the yields and quality of the product fractions were investigated at 8 wt% solid loading. The yield of bio-crude significantly increased from 15.
View Article and Find Full Text PDFThis study is focused on kinetics and product distribution from untreated empty oil palm fruit bunch (EOPFB) biomass and treated EOPFB using analytical pyrolysis combined with gas chromatograph/mass spectrometer and Fourier transform infrared spectrometer, and microwave pyrolysis. Industrial water wash led to significant reduction in ash content of EOPFB from 5.9 wt% to 0.
View Article and Find Full Text PDFRice straw and sugarcane bagasse were co-pyrolyzed with polypropylene and polystyrene using microwaves, and the pyrolysis vapors were catalytically upgraded using HZSM-5 catalyst. The product yields, composition and properties of bio-oil from pyrolysis of individual feedstocks and equal composition mixtures before and after catalytic upgradation were thoroughly investigated. The pyrolysis oil yields from polypropylene (82 wt%) and polystyrene (98 wt%) were high compared to that from rice straw (26 wt%) and bagasse (29 wt%).
View Article and Find Full Text PDFWe present a new polarization holographic microscopy technique based on speckle-field illumination with enhanced spatial resolution and controlled coherent noise reduction. The proposed technique employs a spatial light modulator for the generation of a sequential speckle pattern for the illumination of the sample. The developed microscope is capable of simultaneous extraction of orthogonal polarization components of the field emanating from the sample.
View Article and Find Full Text PDFLignin, a major component of lignocellulosic biomass, is a valuable source of phenolic and aromatic compounds. It is, therefore, vital to develop strategies to selectively deconstruct lignin to valuable chemicals. This study focuses on the kinetics of depolymerization of lignin and the production of phenols via a microwave-assisted catalytic process at mild conditions of 80 °C in dimethyl sulfoxide/water medium.
View Article and Find Full Text PDFWith an objective to improve the yield and selectivity of phenols in pyrolysis bio-oil from lignin, this study investigates the effects of mass ratio of lignin-to-susceptor and different types of susceptors (activated carbons of different particle sizes, charcoal and graphite) in microwave pyrolysis. Pyrolysis was carried out in a batch microwave reactor, and the temperature profiles at different operating conditions were captured. Increasing the mass of susceptor with respect to lignin enhanced the bio-oil yield, and maximum yield of 66 wt% with >90% selectivity to phenols was obtained with 10 g lignin:90 g activated carbon.
View Article and Find Full Text PDFQuantitative measurement of Jones matrix elements is crucial for the study of light polarization with the wide range of applications. Here, we propose and experimentally demonstrate a novel method of Fourier space sharing to determine spatially resolved all four elements of the Jones matrix from a single-intensity frame. This is achieved by applying a holographic approach and making use of two triangular polarization Sagnac interferometers in the sample and reference arms.
View Article and Find Full Text PDFWe propose and demonstrate a compressive sensing (CS) framework for correlation holography. This is accomplished by adopting the principle of compressive sensing and thresholding in the two-point intensity correlation. The measurement matrix and the sensing matrix that are required for applying the CS framework here are systematically extracted from the random illuminations of the laser speckle data.
View Article and Find Full Text PDFWe propose and experimentally demonstrate lensless complex amplitude image retrieval through a visually opaque scattering medium from spatially fluctuating fields using intensity measurement and a phase-retrieval algorithm. The complex amplitude information of the hidden object is encoded in the form of a real and nonnegative amplitude function represented as an interference pattern. A single charge coupled device (CCD) image of the scattered light collected through a visually opaque optical diffuser contains enough information to digitally regenerate the interference pattern.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2017
Optical imaging through complex scattering media is one of the major technical challenges with important applications in many research fields, ranging from biomedical imaging to astronomical telescopy to spatially multiplexed optical communications. Various approaches for imaging through a turbid layer have been recently proposed that exploit the advantage of object information encoded in correlations of the random optical fields. Here we propose and experimentally demonstrate an alternative approach for single-shot imaging of objects hidden behind an opaque scattering layer.
View Article and Find Full Text PDFIn this study, the apparent kinetics of fast pyrolysis of alkali lignin was evaluated by obtaining isothermal mass loss data in the timescale of 2-30s at 400-700°C in an analytical pyrolyzer. The data were analyzed using different reaction models to determine the rate constants and apparent rate parameters. First order and one dimensional diffusion models resulted in good fits with experimental data with apparent activation energy of 23kJmol.
View Article and Find Full Text PDFBioresour Technol
September 2016
In this study, mesoporous activated biochar with high surface area and controlled pore size was prepared from char obtained as a by-product of pyrolysis of Prosopis juliflora biomass. The activation was carried out by a simple process that involved H2O2 treatment followed by microwave pyrolysis. H2O2 impregnation time and microwave power were optimized to obtain biochar with high specific surface area and high adsorption capacity for commercial dyes such as Remazol Brilliant Blue and Methylene Blue.
View Article and Find Full Text PDF