All-solid-state batteries were fabricated by assembling a layer of self-organized TiO nanotubes grown on as anode, a thin-film of polymer as an electrolyte and separator, and a layer of composite LiFePO as a cathode. The synthesis of self-organized TiO NTs from Ti-6Al-4V alloy was carried out via one-step electrochemical anodization in a fluoride ethylene glycol containing electrolytes. The electrodeposition of the polymer electrolyte onto anatase TiO NTs was performed by cyclic voltammetry.
View Article and Find Full Text PDFCarbon nanotubes (CNT) are used as anodes for flexible Li-ion micro-batteries. However, one of the major challenges in the growth of flexible micro-batteries with CNT as the anode is their immense capacity loss and a very low initial coulombic efficiency. In this study, we report the use of a facile direct pre-lithiation to suppress high irreversible capacity of the CNT electrodes in the first cycles.
View Article and Find Full Text PDFDue to their high specific surface area and advanced properties, TiO nanotubes (TiO NTs) have a great significance for production and storage of energy. In this paper, TiO NTs were synthesized from anodization of Ti-6Al-4V alloy at 60 V for 3 h in fluoride ethylene glycol electrolyte by varying the water content and further annealing treatment. The morphological, structural, optical and electrochemical performances of TiO NTs were investigated by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), UV-Visible spectroscopy and electrochemical characterization techniques.
View Article and Find Full Text PDFWe report the electrochemical performance of porous NASICON-type Li3Fe2(PO4)3 thin films to be used as a cathode for Li-ion microbatteries. Crystalline porous NASICON-type Li3Fe2(PO4)3 layers were obtained by radio frequency sputtering with an annealing treatment. The thin films were characterized by XRD, SEM, and electrochemical techniques.
View Article and Find Full Text PDF