Publications by authors named "Vinothini Arunagiri"

Stimuli-responsive polymeric micelles decorated with cancer biomarkers represent an optimal choice for drug delivery applications due to their ability to enhance therapeutic efficacy while mitigating adverse side effects. Accordingly, we synthesized a digoxin-modified novel multifunctional redox-responsive disulfide-linked poly(ethylene glycol--poly(lactic--glycolic acid) copolymer (Bi(Dig-PEG-PLGA)-S) for the targeted and controlled release of doxorubicin (DOX) in cancer cells. Within the micellar aggregate, the disulfide bond confers redox responsiveness, while the presence of the digoxin moiety acts as a targeting agent and chemosensitizer for DOX.

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been demonstrated to limit the host interferon response; however, the underlying mechanism remains unclear. Here, we found that SARS-CoV-2 infection upregulated the E3 ubiquitin ligase Huwe1, which in turn facilitated the degradation of the transcription factor Miz1. The degradation of Miz1 hampered interferon alpha and gamma responses, consequently fostering viral replication and impeding viral clearance.

View Article and Find Full Text PDF

Type I interferons (IFNs) are critical for the antiviral immune response, and fine-tuning type I IFN production is critical to effectively clearing viruses without causing harmful immunopathology. We showed that the transcription factor Miz1 epigenetically repressed the expression of genes encoding type I IFNs in mouse lung epithelial cells by recruiting histone deacetylase 1 (HDAC1) to the promoters of and . Loss of function of Miz1 resulted in augmented production of these type I IFNs during influenza A virus (IAV) infection, leading to improved viral clearance in vitro and in vivo.

View Article and Find Full Text PDF

Targeting KRAS-mutated non-small-cell lung cancer (NSCLC) remains clinically challenging. Here we show that loss of function of Miz1 inhibits lung tumorigenesis in a mouse model of oncogenic KRAS-driven lung cancer. In vitro, knockout or silencing of Miz1 decreases cell proliferation, clonogenicity, migration, invasion, or anchorage-independent growth in mutant (MT) KRAS murine or human NSCLC cells but has unremarkable impact on non-tumorigenic cells or wild-type (WT) KRAS human NSCLC cells.

View Article and Find Full Text PDF

The efficiency of chemotherapy is frequently affected by its multidrug resistance, immune suppression, and severe side effects. Its combination with immunotherapy to reverse immune suppression and enhance immunogenic cell death (ICD) has emerged as a new strategy to overcome the aforementioned issues. Herein, we construct a pH-responsive PAMAM dendritic nanocarrier-incorporated hydrogel for the co-delivery of immunochemotherapeutic drugs.

View Article and Find Full Text PDF

In humans, excessive bleeding during civilian accidents, and surgery account for 40% of the mortality worldwide. Hence, the development of biocompatible hemostatic materials useful for rapid hemorrhage control has become a fundamental research problem in the biomedicine community. In this study, we prepared biocompatible gelatin-tannic acid-κ-carrageenan (GTC) microparticles using a facile Tween 80 stabilized water-in-oil (W/O) emulsion method for rapid hemostasis.

View Article and Find Full Text PDF

Fucoidan is an abundant marine sulfated polysaccharide extracted from the cell wall of brown macroalgae (seaweed). Recently, fucoidan has been highly involved in various industrial applications, such as pharmaceuticals, biomedicals, cosmetics, and food. However, the presence of a sulfate group (negative surface charge) in the fucoidan structure limits its potential and biological activity for use in biomedical applications during cellular uptake.

View Article and Find Full Text PDF

To prepare efficient metal-semiconductor nanoparticles as noninvasive, real-time imaging probes for photothermal therapy (PTT) applications. A bottom-up approach was used to fabricate core-shell Ag@CuS nanoparticles (NPs). PTT and Raman mapping were done using HeLa cells.

View Article and Find Full Text PDF

Fucoidan, a sulphated polysaccharide, plays a vital role in reducing cellular oxidative damage by exerting potential antioxidant activity. However, because of the negative surface charges of oligofucoidan, it shows poor oral intestinal absorption. To overcome this drawback, the oligofucoidan polysaccharides self-assembled with opposite charge based polysaccharides (chitosan) to form the chitosan-fucoidan polysaccharides (C-FP) nanoparticles (NPs) of 190-230 nm in size.

View Article and Find Full Text PDF

In this study, bio-responsive polymeric MoS nanocomposites were prepared for use as a drug carrier for cancer therapy. Herein, we report the synthesis and demonstrate the self-assembly of pluronic F127 (PF127) on a cystamine-glutathione-MoS (CYS-GSH-MoS) system, which can be used for GSH-triggered drug release under biological reducing conditions. The reduction-sensitive disulfide bond containing CYS was incorporated between the amphiphilic copolymer PF127 and GSH-MoS to achieve feasible drug release.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: