This paper focuses on two types of neural network-based Hammerstein model identification methods for the acrylamide polymerization reaction of a batch reactor process. The first neural-based identification type formulates the weights of the multilayer network directly as parameters of the nonlinear static and linear dynamic blocks of the Hammerstein model and trains the weights using a gradient-based backpropagation algorithm. In the second identification type, the nonlinear static block of the Hammerstein model is framed as a single hidden-layer feedforward network and both nonlinear and linear block parameters are trained using an extreme learning machine, where the training procedure is exempted from gradient calculation.
View Article and Find Full Text PDF