Duchenne muscular dystrophy (DMD) is a rare genetic disorder caused by the absence of a fully functional dystrophin protein in myocytes. In skeletal muscle, the lack of dystrophin ultimately results in muscle wasting and the replacement of myocytes with fatty or fibrous tissues. In the heart, cardiomyocytes eventually fail and cause fatal cardiomyopathy.
View Article and Find Full Text PDFWe report three unrelated individuals with atypical clinical findings for cardio-facio-cutaneous (CFC) syndrome, all of whom have the same novel, heterozygous de novo p.H119Y (c.355 C>T) transition variant in MAP2K1, identified by exome sequencing.
View Article and Find Full Text PDFCSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear.
View Article and Find Full Text PDFSnyder-Robinson syndrome (SRS) is a rare X-linked recessive disorder characterized by a collection of clinical features including mild to severe intellectual disability, hypertonia, marfanoid habitus, facial asymmetry, osteoporosis, developmental delay and seizures. Whole genome sequencing (WGS) identified a mutation in the spermine synthase () gene (c.746 A>G, p.
View Article and Find Full Text PDFFGF12 related epilepsy presents with variable phenotypes. We report another patient with a duplication involving the FGF12 gene who presented similar to other published cases having normal early development and responded to phenytoin.
View Article and Find Full Text PDFRett syndrome is an acquired progressive neurodevelopmental disorder caused by mutations in the X-linked MECP2 gene which encodes a pleiotropic protein that functions as a global transcriptional regulator and a chromatin modifier. Rett syndrome predominantly affects heterozygous females while affected male hemizygotes rarely survive. Gene therapy of Rett syndrome has proven challenging due to a requirement for stringent regulation of expression with either over- or under-expression being toxic.
View Article and Find Full Text PDFValosin-containing protein (VCP) is an AAA+ ATPase that plays critical roles in multiple ubiquitin-dependent cellular processes. Dominant pathogenic variants in VCP are associated with adult-onset multisystem proteinopathy (MSP), which manifests as myopathy, bone disease, dementia, and/or motor neuron disease. Through GeneMatcher, we identified 13 unrelated individuals who harbor heterozygous VCP variants (12 de novo and 1 inherited) associated with a childhood-onset disorder characterized by developmental delay, intellectual disability, hypotonia, and macrocephaly.
View Article and Find Full Text PDFPedigree showing the autosomal dominant inheritance pattern of CSNK21 variants in families presenting with OCNDS. (A) Maternal inheritance to two daughters in Family 1, (B) Paternal inheritance to a daughter in Family 2, and (C) Maternal inheritance to two sons in Family 3.
View Article and Find Full Text PDFFebrile seizures (FS) are the most common form of epilepsy in children between six months and five years of age. FS is a self-limited type of fever-related seizure. However, complicated prolonged FS can lead to complex partial epilepsy.
View Article and Find Full Text PDFThe vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc).
View Article and Find Full Text PDFTRPM3 is a temperature- and neurosteroid-sensitive plasma membrane cation channel expressed in a variety of neuronal and non-neuronal cells. Recently, rare de novo variants in were identified in individuals with developmental and epileptic encephalopathy, but the link between TRPM3 activity and neuronal disease remains poorly understood. We previously reported that two disease-associated variants in TRPM3 lead to a gain of channel function .
View Article and Find Full Text PDFHypomelanosis of Ito (HI) is a neurocutaneous disorder associated with central nervous system abnormalities, including speech delay and intellectual disability. The long term neuropsychological and social characteristics of these children are unknown. Neuropsychological observations and parental reports were obtained yearly on a child with HI from ages 7 to 18 years.
View Article and Find Full Text PDFZC4H2 (MIM# 300897) is a nuclear factor involved in various cellular processes including proliferation and differentiation of neural stem cells, ventral spinal patterning and osteogenic and myogenic processes. Pathogenic variants in ZC4H2 have been associated with Wieacker-Wolff syndrome (MIM# 314580), an X-linked neurodevelopmental disorder characterized by arthrogryposis, development delay, hypotonia, feeding difficulties, poor growth, skeletal abnormalities, and dysmorphic features. Zebrafish zc4h2 null mutants recapitulated the human phenotype, showed complete loss of vsx2 expression in brain, and exhibited abnormal swimming and balance problems.
View Article and Find Full Text PDFVacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease.
View Article and Find Full Text PDFObjective: Collier/Olf/EBF (COE) transcription factors have distinct expression patterns in the developing and mature nervous system. To date, a neurological disease association has been conclusively established for only the Early B-cell Factor-3 (EBF3) COE family member through the identification of heterozygous loss-of-function variants in individuals with autism spectrum/neurodevelopmental disorders (NDD). Here, we identify a symptom severity risk association with missense variants primarily disrupting the zinc finger domain (ZNF) in EBF3-related NDD.
View Article and Find Full Text PDFHereditary spastic paraplegia (HSP) comprises a heterogeneous group of neuropathies affecting upper motor neurons and causing progressive gait disorder. Mutations in the gene SPG3A/atlastin-1 (ATL1), encoding a dynamin superfamily member, which utilizes the energy from GTP hydrolysis for membrane tethering and fusion to promote the formation of a highly branched, smooth endoplasmic reticulum (ER), account for approximately 10% of all HSP cases. The continued discovery and characterization of novel disease mutations are crucial for our understanding of HSP pathogenesis and potential treatments.
View Article and Find Full Text PDFTET3 encodes an essential dioxygenase involved in epigenetic regulation through DNA demethylation. TET3 deficiency, or Beck-Fahrner syndrome (BEFAHRS; MIM: 618798), is a recently described neurodevelopmental disorder of the DNA demethylation machinery with a nonspecific phenotype resembling other chromatin-modifying disorders, but inconsistent variant types and inheritance patterns pose diagnostic challenges. Given TET3's direct role in regulating 5-methylcytosine and recent identification of syndrome-specific DNA methylation profiles, we analyzed genome-wide DNA methylation in whole blood of TET3-deficient individuals and identified an episignature that distinguishes affected and unaffected individuals and those with mono-allelic and bi-allelic pathogenic variants.
View Article and Find Full Text PDFBackground: Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation.
View Article and Find Full Text PDFCerebellar-facial-dental syndrome (CFDS) is a newly described autosomal recessive genetic disorder characterized by mutations in the BRF1 gene. CFDS is clinically associated with dysmorphic facial features and cerebellar hypoplasia. We report visually significant progressive bilateral nuclear cataracts in a child with CFDS and identify a new causative genetic variant.
View Article and Find Full Text PDFCSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes.
View Article and Find Full Text PDF