G-quadruplex (G4) structures play roles in various biological processes, but the challenge lies in specific targeting. To address this, we synthesized a conjugate capable of recognizing the G4 structure and its proximal duplex. Our conjugate can enable recognition of specific G4s in the human genome to understand and target those structures.
View Article and Find Full Text PDFG-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity.
View Article and Find Full Text PDFDiscoidin domain receptor (DDR) 1, a collagen binding receptor kinase, is an intensively researched therapeutic target for cancer, fibrosis and other diseases. The majority of early known DDR1 inhibitors targeted the ATP binding pocket of this enzyme that shares structural similarities with other kinase pockets across the biological system. This structural similarity of DDR1 kinase with other protein kinases often leads to "off target "toxicity issues.
View Article and Find Full Text PDFG-quadruplexes (G4s) are non-canonical structures formed in guanine (G)-rich sequences through stacked G tetrads by Hoogsteen hydrogen bonding. Several studies have demonstrated the existence of G4s in the genome of various organisms, including humans, and have proposed that G4s have a regulatory role in various cellular functions. However, little is known regarding the dissemination of G4s in mitochondria.
View Article and Find Full Text PDFNanopore direct RNA sequencing (dRNA-Seq) reads reveal RNA modifications through consistent error profiles specific to a modified nucleobase. However, a null data set is required to identify actual RNA modification-associated errors for distinguishing it from confounding highly intrinsic sequencing errors. Here, we reveal that inosine creates a signature mismatch error in dRNA-Seq reads and obviates the need for a null data set by harnessing the selective reactivity of acrylonitrile for validating the presence of actual inosine modifications.
View Article and Find Full Text PDFCovering: up to the end of 2022Microorganisms are exceptional sources of a wide array of unique natural products and play a significant role in drug discovery. During the golden era, several life-saving antibiotics and anticancer agents were isolated from microbes; moreover, they are still widely used. However, difficulties in the isolation methods and repeated discoveries of the same molecules have caused a setback in the past.
View Article and Find Full Text PDFCOVID-19 is a viral disease that in the form of a pandemic has spread in the entire world, causing a severe impact on people's well being. In fighting against this deadly disease, a pivotal step can prove to be an effective screening and diagnosing step to treat infected patients. This can be made possible through the use of chest X-ray images.
View Article and Find Full Text PDFAccording to the World Health Organization (WHO), novel coronavirus (COVID-19) is an infectious disease and has a significant social and economic impact. The main challenge in fighting against this disease is its scale. Due to the outbreak, medical facilities are under pressure due to case numbers.
View Article and Find Full Text PDFIn this manuscript we have documented the identification of a novel anticancer scaffold 3-(benzofuran-2-ylmethyl)-1H-indole. This scaffold has been designed by tweaking the known bisindolylmethane scaffold of natural products that display a wide range of biological activities. A series of 24 new conjugates have been synthesized and among them 5 derivatives exhibited IC values less than 40 µM against two cervical cancer cell lines SiHa and C33a.
View Article and Find Full Text PDF