Surface functionalization of low-dimensional nanomaterials offers a means to tailor their optoelectronic and chemical characteristics. However, functionalization reactions are sensitive to the inherent surface features of nanomaterials, such as defects, grain boundaries, and edges. Conventional optical characterization methods, such as Raman spectroscopy, have limited sensitivity and spatial resolution and, therefore, struggle to visualize reaction sites and chemical species.
View Article and Find Full Text PDFGraphene oxide (GO) has attracted substantial interest for its tunable properties and as a possible intermediate for the bulk manufacture of graphene. GO and its reduced derivatives display electronic and optical properties that depend strongly on their chemical structure, and with proper functionalization, GO can have a desirable bandgap for semiconductor applications. However, its chemical activity leads to a series of unclear chemical changes under ambient conditions, resulting in changes in color and solubility upon exposure to light.
View Article and Find Full Text PDFTwo-dimensional (2D) molybdenum ditelluride (MoTe) is a member of the transition-metal dichalcogenides family, which is an especially promising platform for surface-enhanced Raman scattering (SERS) applications, due to its excellent electronic properties. However, the synthesis of large-area highly crystalline 2D MoTewith controllable polymorphism is a huge challenge due to the small free energy difference (∼40 meV per unit cell) between semiconducting 2H-MoTeand semi-metallic 1 T'-MoTe. Herein, we report an optimized route for the synthesis of 2H- and 1 T'-MoTefilms by atmospheric-pressure chemical vapor deposition.
View Article and Find Full Text PDF3D hybrid nanostructures connecting 1D carbon nanotubes (CNTs) with 2D graphene have attracted more and more attentions due to their excellent chemical, physical and electrical properties. In this study, we firstly report a novel and facile one-step process using template-directed chemical vapor deposition (CVD) to fabricate highly nitrogen doped three-dimensional (3D) N-doped carbon nanotubes/N-doped graphene architecture (N-CNTs/N-graphene). We used nickel foam as substrate, melamine as a single source for both carbon and nitrogen, respectively.
View Article and Find Full Text PDFWe report here the synthesis of metal oxide nanosheets (MONs) directly grown on stainless steel substrates by thermal oxidation in the presence of trace amounts of water. The morphology and microstructure of MONs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and atomic force microscopy (AFM). The composition of MONs was determined by the energy dispersive system and X-ray diffraction patterns.
View Article and Find Full Text PDFIntegration of two-dimensional graphene and one-dimensional carbon nanotubes (CNTs) to create potentially useful 3D mesoscopic carbon structures with enhanced properties relative to the original materials is very desirable. Here, we report a novel and simple route using chemical vapor deposition (CVD) methods to fabricate bead-like nitrogen-doped CNT/graphene composites (NCNT/G) a simple pyrolysis of the N-rich melamine in the presence of graphene oxide (GO) as a substrate using a Mn-Ni-Co ternary catalyst. We have characterized these structures by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra, isothermal analyses, and X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFHerein we report simple, low-cost and scalable preparation of reduced graphene oxide (rGO) supported surfactant-free Cu2O-TiO2 nanocomposite photocatalysts by an ultrasound assisted wet impregnation method. Unlike the conventional preparation techniques, simultaneous reduction of Cu(2+) (in the precursor) to Cu(+) (Cu2O), and graphene oxide (GO) to rGO is achieved by an ultrasonic method without the addition of any external reducing agent; this is ascertained by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. UV-visible diffused reflectance spectroscopy (DRS) studies (Tauc plots) provide evidence for the loading of Cu2O tailoring the optical band gap of the photocatalyst from 3.
View Article and Find Full Text PDFGraphene oxide (GO) is an important precursor in the production of chemically derived graphene. During reduction, GO's electrical conductivity and band gap change gradually. Doping and chemical functionalization are also possible, illustrating GO's immense potential in creating functional devices through control of its local hybridization.
View Article and Find Full Text PDFSoluble graphene nanosheets, prepared by grafting polystyrene-based polymer chains from the surface of reduced graphene oxide (RGO), have been functionalized with pendant Ru(II) polypyridine chromophores. N-Hydroxysuccinimide (NHS) derivatized p-vinylbenzoic acid polymer chains were grown from methyl bromoisobutyrate initiation sites on the surface of RGO by atom transfer radical polymerization (ATRP). Deprotection of the resulting NHS polystyrene chains followed by amide coupling with the amine-derivatized Ru(II) polypyridyl complex [Ru(4-CH2NH2-4'-CH3-bpy)(bpy)2](2+) (4-CH2NH2-4'-CH3-bpy = 4-aminomethyl-4'-methyl 2,2'-bipyridine and bpy = 2,2'-bipyridine) afforded the covalently linked RGO-metallopolymer.
View Article and Find Full Text PDFA simple approach to monitor the H(+) activity of a proton-exchange membrane (Nafion) is introduced by incorporating methylene blue as an indicator dye. The dye exhibits characteristics absorption maxima at 665 and 745 nm corresponding to its singly and doubly protonated forms, respectively. The apparent proton activity of Nafion as monitored from the appearance of doubly protonated methylene blue absorption is equivalent to 1.
View Article and Find Full Text PDFWell-dispersed Pt catalysts with very high utilization efficiencies for fuel cell reactions have been prepared by ethylene glycol reduction on polymer-wrapped single-walled carbon nanotubes (SWCNTs). By wrapping the SWCNTs in a polymer such as polystyrene sulfonate, we are able to break up the nanotube bundles to achieve better dispersion. These polymer-wrapped SWCNTs with platinum nanoparticles deposited on them show very high electrochemically active surface areas.
View Article and Find Full Text PDFA hybrid carbon fiber electrode (CFE) consisting of TiO2 semiconductor photocatalyst and Pt-Ru catalyst has been developed to boost the performance of direct methanol fuel cells (DMFC). These two catalyst nanoparticles are deposited on opposite sides of the carbon fiber paper such that methanol oxidation is carried out catalytically on Pt-Ru and photocatalytically on TiO2 under UV-light irradiation. Since both catalysts carry out methanol oxidation independently, we observe an additive effect in the current generation.
View Article and Find Full Text PDFColloidal bimetallic nanoparticles of Pt-Ru have been synthesized by sonochemical reduction of Pt(II) and Ru(III) in aqueous solutions. Transmission electron microscope (TEM) images indicate that sequential reduction of the Pt(II) followed by the Ru(III) produces particles with a core shell (Pt@Ru) morphology. In the presence of sodium dodecyl sulfate, SDS, as a stabilizer, the particles have diameters between 5 and 10 nm.
View Article and Find Full Text PDFSingle-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface.
View Article and Find Full Text PDFA membrane electrode assembly (MEA) for hydrogen fuel cells has been fabricated using single-walled carbon nanotubes (SWCNTs) support and platinum catalyst. Films of SWCNTs and commercial platinum (Pt) black were sequentially cast on a carbon fiber electrode (CFE) using a simple electrophoretic deposition procedure. Scanning electron microscopy and Raman spectroscopy showed that the nanotubes and the platinum retained their nanostructure morphology on the carbon fiber surface.
View Article and Find Full Text PDFA one-step process of solubilization of single wall carbon nanotubes (SWCNT) in an organic solvent has enabled us to polarize them asymmetrically in a dc electric field. Quaternary ammonium ion-capped SWCNTs readily suspend in organic solvents; under the influence of a dc electric field, they assemble as stretched bundles anchored on the positive electrode. At low dc applied field (approximately 40 V), all of the SWCNTs from the suspension are deposited on the electrode, thus providing a simple methodology to design robust SWCNT films.
View Article and Find Full Text PDFAn electroanalytical method has been developed to investigate the uptake of redox-active species by the humic acid substances. The Suwannee River humic acid (SHA) films were first cast on a glassy carbon electrode using an electrophoretic approach. The binding of a series of redox-active species to these SHA films was then probed using cyclic voltammetry at a rotating disk electrode.
View Article and Find Full Text PDFPolydisperse humic acid thin films on optically transparent electrodes (OTEs) have been prepared by electrophoretic deposition from a solution of Suwanee River humic acid (SHA) in ethanol/acetonitrile. The thickness of the film and the rate of deposition of SHA are dependent on the applied voltage and the concentration of the solution. Tapping-mode atomic force microscopy (TM-AFM) confirms the assembly of SHA aggregates on the electrode surface.
View Article and Find Full Text PDF