The thalamus has a key role in mediating cortical-subcortical interactions but is often neglected in neuroimaging studies, which mostly focus on changes in cortical structure and activity. One of the main reasons for the thalamus being overlooked is that the delineation of individual thalamic nuclei via neuroimaging remains controversial. Indeed, neuroimaging atlases vary substantially regarding which thalamic nuclei are included and how their delineations were established.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
August 2024
Background: Thalamic nuclei facilitate a wide range of complex behaviors, emotions, and cognition and have been implicated in neuropsychiatric disorders including Alzheimer's disease (AD) and schizophrenia (SCZ). The aim of this work was to establish novel normative models of thalamic nuclear volumes and their laterality indices and investigate their changes in SCZ and AD.
Methods: Volumes of bilateral whole thalami and 10 thalamic nuclei were generated from T1 magnetic resonance imaging data using a state-of-the-art novel segmentation method in healthy control participants (n = 2374) and participants with early mild cognitive impairment (n = 211), late mild cognitive impairment (n = 113), AD (n = 88), and SCZ (n = 168).
Thalamic nuclei have been implicated in neurodegenerative and neuropsychiatric disorders. Normative models for thalamic nuclear volumes have not been proposed thus far. The aim of this work was to establish normative models of thalamic nuclear volumes and subsequently investigate changes in thalamic nuclei in cognitive and psychiatric disorders.
View Article and Find Full Text PDFKetamine is a rapid-acting antidepressant that also influences neural reactivity to affective stimuli. However, the effect of ketamine on behavioral affective reactivity is yet to be elucidated. The affect-modulated startle reflex paradigm (AMSR) allows examining the valence-specific aspects of behavioral affective reactivity.
View Article and Find Full Text PDFThe intralaminar nuclei of the thalamus play a pivotal role in awareness, conscious experience, arousal, sleep, vigilance, as well as in cognitive, sensory, and sexual processing. Nonetheless, in humans, little is known about the direct involvement of these nuclei in such multifaceted functions and their structural connections in the brain. Thus, examining the versatility of structural connectivity of the intralaminar nuclei with the rest of the brain seems reasonable.
View Article and Find Full Text PDFAlthough the thalamus is perceived as a passive relay station for almost all sensory signals, the function of individual thalamic nuclei remains unresolved. In the present study, we aimed to identify the sensorimotor nuclei of the thalamus in humans using task-based fMRI at a field strength of 9.4T by assessing the individual subject-specific sensorimotor BOLD response during a combined active motor (finger-tapping) and passive sensory (tactile-finger) stimulation.
View Article and Find Full Text PDFAlmost all functional processing in the cortex strongly depends on thalamic interactions. However, in terms of functional interactions with the cerebral cortex, the human thalamus nuclei still partly constitute a terra incognita. Hence, for a deeper understanding of thalamic-cortical cooperation, it is essential to know how the different thalamic nuclei are associated with cortical networks.
View Article and Find Full Text PDFThe thalamus (Th) and basal ganglia (BG) are central subcortical connectivity hubs of the human brain, whose functional anatomy is still under intense investigation. Nevertheless, both substructures contain a robust and reproducible functional anatomy. The quantitative susceptibility mapping (QSM) at ultra-high field may facilitate an improved characterization of the underlying functional anatomy .
View Article and Find Full Text PDFThe thalamus is a vital communication hub in the center of the brain and consists of distinct nuclei critical for consciousness and higher-order cortical functions. Structural and functional thalamic alterations are involved in the pathogenesis of common brain disorders, yet the genetic architecture of the thalamus remains largely unknown. Here, using brain scans and genotype data from 30,114 individuals, we identify 55 lead single nucleotide polymorphisms (SNPs) within 42 genetic loci and 391 genes associated with volumes of the thalamus and its nuclei.
View Article and Find Full Text PDFBrain controllability properties are normally derived from the white matter fiber tracts in which the neural substrate of the actual energy consumption, namely the gray matter, has been widely ignored. Here, we study the relationship between gray matter volume of regions across the whole cortex and their respective control properties derived from the structural architecture of the white matter fiber tracts. The data suggests that the ability of white fiber tracts to exhibit control at specific nodes not only depends on the connection strength of the structural connectome but additionally depends on gray matter volume at the host nodes.
View Article and Find Full Text PDFThe limbic system is a phylogenetically old, behaviorally defined system that serves as a center for emotions. It controls the expression of anger, fear, and joy and also influences sexual behavior, vegetative functions, and memory. The system comprises a collection of tel-, di-, and mesencephalic structures whose components have evolved and increased over time.
View Article and Find Full Text PDFPattern classification and stratification approaches have increasingly been used in research on Autism Spectrum Disorder (ASD) over the last ten years with the goal of translation towards clinical applicability. Here, we present an extensive scoping literature review on those two approaches. We screened a total of 635 studies, of which 57 pattern classification and 19 stratification studies were included.
View Article and Find Full Text PDFWhole-brain voxel-based morphometry (VBM) studies revealed patterns of patchy atrophy within the cerebellum of Friedreich's ataxia patients, missing clear clinico-anatomic correlations. Studies so far are lacking an appropriate registration to the infratentorial space. To circumvent these limitations, we applied a high-resolution atlas template of the human cerebellum and brainstem (SUIT template) to characterize regional cerebellar atrophy in Friedreich's ataxia (FRDA) on 3-T MRI data.
View Article and Find Full Text PDFOne of the principal goals in functional magnetic resonance imaging (fMRI) is the detection of local activation in the human brain. However, lack of statistical power and inflated false positive rates have recently been identified as major problems in this regard. Here, we propose a non-parametric and threshold-free framework called LISA to address this demand.
View Article and Find Full Text PDFNeurodevelopmental disorders, such as ASD and ADHD, affect males about three to four times more often than females. 16p11.2 hemideletion is a copy number variation that is highly associated with neurodevelopmental disorders.
View Article and Find Full Text PDFFunctional neuroimaging studies have led to understanding the brain as a collection of spatially segregated functional networks. It is thought that each of these networks is in turn composed of a set of distinct sub-regions that together support each network's function. Considering the sub-regions to be an essential part of the brain's functional architecture, several strategies have been put forward that aim at identifying the functional sub-units of the brain by means of functional parcellations.
View Article and Find Full Text PDFIn the present work, we used resting state-fMRI to investigate the functional anatomy of the thalamus at rest by applying an Independent Component Analysis to delineate thalamic substructures into stable and reproducible parcels for the left and right thalamus. We determined 15 functionally distinct thalamic parcels, which differed in laterality and size but exhibited a correspondence with 18 cytoarchitectonally defined nuclei. We characterized their structural connectivity in determining DWI based cortical fiber pathways and found selected projections to different cortical areas.
View Article and Find Full Text PDF